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Preface

One theory is the most impressive,
the simpler are its premises,
the more distinct are the things it connects,
and the broader is its range of applicability.

Albert Einstein

There are two ways to teach some topic of modern science, namely:

1. the systematic theoretical form and
2. the application-oriented way.

The first means a systematic presentation of the material, governed by the desire for
perfection (from a mathematical point of view) and completeness of the presented
results. In contrast to the first, the second approach begins with the question “What is
the most important application of the considered topic?” and then tries to answer this
question as quickly as possible without wandering all the good and possibly interesting
side roads.

The present book is based on both methods, giving the mathematically precise
foundations of mechanics as a natural science, complemented by several practical ex-
amples that illustrate the basic enunciations under consideration. The reader feels that
the theory is being developed, not only by itself, but by the effective solution of con-
crete problems. This course deals with different kinds of mechanical, electrical, and
electromechanical models providing deep analysis of each one, including the corre-
sponding numerical calculations.

This book is aimed at graduate students (Masters and Doctorate) of the Electrical
Engineering faculties, studying mechanics, mechatronics, and control, who wish to
learn more about how the elegant theory of classical and analytical mechanics solves
different problems that arise in the real world.

The modern word “mechatronics,” also called mechatronic engineering, is a mul-
tidisciplinary branch of engineering that focuses on the engineering of both electrical
and mechanical systems, and also includes a combination of robotics, electronics,
computer science, telecommunications, systems control, and product engineering. As
technology advances over time, various subfields of engineering have succeeded in
both adapting and multiplying. The intention of mechatronics is to produce a design
solution that unifies each of these various subfields. Originally, the field of mechatron-
ics was intended to be nothing more than a combination of mechanics and electronics,
hence the name being a portmanteau of mechanics and electronics; however, as the
complexity of technical systems continued to evolve, the definition was broadened to
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include more technical areas. Many people treat mechatronics as a modern buzzword
synonymous with robotics and electromechanical engineering.1

The presented material is based on more than 25 years of teaching experi-
ence of the author, initially in Russia (Technical Institute of Physics of Moscow
[MFTI] during 1979–1993) and then in Mexico (Center for Research and Ad-
vanced Studies of the IPN [CINVESTAV], Automatic Control Department, Mexico
City, during 1993–2018). The fundamental concepts of this course were created by
world-renowned scientists such as F.R. Gantmacher, M.A. Aizerman, and E.S. Pyat-
nickii and later developed by I.P. Devyaterikov, G.N. Yakovenko, N.M. Truhan, and
Yu.I. Khanukaev.

The author would like to express his wide thanks to his colleagues from MFTI
(Russia) and his Mexican ex-PhD students (now doctors) J. Medel, J. Correa-Martinez,
Daishi Murano, F. Bejarano, M. Jiménez, and I. Chairez for their kind collaboration
and help in the creation of this manuscript.

Alex S. Poznyak
Mexico City and Avándaro, Mexico

2020

1 The word mechatronics originated in Japanese-English and was created by Tetsuro Mori, an engineer of
Yaskawa Electric Corporation. The word mechatronics was registered as trademark by the company in
Japan with the registration number “46-32714” in 1971. However, afterward the company released the
right of using the word to public, the word begun being used across the world. Nowadays, the word is
translated into many languages and the word is considered as an essential term for industry.



Notation

Scalars

Scalars are the elements of the real (R) or complex (C) fields and are denoted by
lowercase letters in italics, for example, a, b.

Given the scalar a, |a| represents its absolute value if a ∈ R and its module if a ∈C.

Vectors

The vectors are denoted with bold letters, for example, a, K.
The unit vectors in the Cartesian coordinate directions x, y, z are represented re-

spectively by i, j,k.
Given the vector a, its magnitude is denoted by a, or |a|.
(a,b) denotes the internal or scalar product of vectors a and b.
[a,b] denotes the vector product of vectors a and b.
â,b denotes the smallest angle between the vectors a and b.
a ‖ b indicates that the vectors a and b are parallel.
a ⊥ b indicates that the vectors a and b are orthogonal.
AB denotes the segment with extreme points A and B.
g denotes the gravity acceleration vector.
∠AOB is the angle in the triangle AOB with the vertex in O.

Matrices

The matrices are tables, represented by uppercase letters in italics, for example,

A = ∥
∥aij

∥
∥

i=1,...,n;j=1,...,m
.

Given the square matrix A, its determinant is denoted by detA and its trace by trA.
Given matrix A, its transpose is represented by AT = ∥

∥aji

∥
∥.

Ker(A) denotes the kernel of matrix A, i.e.,

Ker (A) = {x : Ax = 0} .
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Functions

To represent the functions, the letters are used according to the type to which the value
of the function belongs, for example,

f1 : R → R, f2 : Rn → R,

g1 : R → Rn, g2 : Rn → Rm,

A1 : R → Rn×m, A2 : R3 → Rn×m,

where n, m are positive integers.

Derivatives

ȧ, ä indicate the first and second time derivatives of vector a.
For the real function f (r) : Rn → R the following notations are used:

first derivative or gradient,

∂

∂r
f = ∇f =

[
∂f

∂r1
,

∂f

∂r2
, · · · ,

∂f

∂rn

]ᵀ
;

second derivative matrix or Hessian,

∂2

∂r2
f = ∇2f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2f

∂r1∂r1

∂2f

∂r1∂r2
· · · ∂2f

∂r1∂rn

∂2f

∂r2∂r1

∂2f

∂r2∂r2
· · · ∂2f

∂r2∂rn
...

...
. . .

...

∂2f

∂rn∂r1

∂2f

∂rn∂r2
· · · ∂2f

∂rn∂rn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The derivative of the vector function g (r) :Rn → R
m is the functional matrix given

by

∂g
∂r

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂g1

∂r1

∂g1

∂r2
· · · ∂g1

∂rn
∂g2

∂r1

∂g2

∂r2
· · · ∂g2

∂rn
∂gm

∂r1

∂gm

∂r2
· · · ∂gm

∂rn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.



Notation xxvii

Quaternion

A quaternion is a complex number of the form

� := λ0 +
3

∑

j=1

λj ij = λ0 + λ,

where λi (i = 0, ...,3) are real numbers and ij are imaginary units that satisfy certain
conditions.1

The product � ◦ � of two quaternions � = λ0 + λ and � = δ0 + δ is defined as

� ◦ � := λ0δ0 − (λ, δ) + λ0δ + δ0λ + [λ, δ] ,

where (λ, δ) is the scalar and [λ, δ] is the vector product.

Quadratic forms

We have

‖x‖2
Q := xᵀQx =

n
∑

i=1

n
∑

j=1

qij xixj ,

Q = ∥
∥qij

∥
∥

i=1,...,n; j=1,...,n
.

1 Recall that when Hamilton passed from complex numbers to quaternions, multiplication lost one of its
normal properties: commutativity.
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Introduction

Several good books dedicated to physical, mechanical, electrical, and electromechan-
ical models are well known within the area of technological sciences. Among them
we can quote (Rutherford, 1951), (Becker, 1954), (Seely et al., 1958), (Corben and
Stehle, 1960), (Kittel et al., 1968), (Symon, 1968), (Landau and Lifshitz, 1969), (Gant-
makher, 1970), (Barger and Olsson, 1973), (Kibble, 1973), (Titherington and Rimmer,
1973), (Lawden, 1974), (Bartlett, 1975), (Burghes and Downs, 1975), (Abraham and
Marsden, 1978), (Devaney and Nitecki, 1981), (Takwale and Puranik, 1979), (Gold-
stein, 1980), (Kotkin and Serbo, 1980), (Aizerman, 1980), (Desloge, 1982), (Hestenes,
1986), (Fowles, 1986), (Arnold, 1989), (Matzner and Shepley, 1991), (Marsden,
1992), (Chow, 1995), (Barger et al., 1995), (Bhatia, 1997), (Arya, 1998), (Kwatny and
Blankenship, 2000), (Kibble and Berkshire, 2004), (Fowles et al., 2005), (Deriglazov,
2016), (Torres del Castillo, 2018).

This book differs from the aforementioned books in different aspects. Maintaining
the precise and rigorous form of mathematical explanation, this book is basically
oriented towards readers in the engineering area, while the above cited classical
books are aimed at specialists in the fields of theoretical and mathematical physics.
In this book the most discussed models of practical systems (gyroscopes, robots, and
some electrical schemes, in particular, power converters) are considered in details.

The discussion of the contents of the book is presented below.

The Lagrangian formalism is presented in Chapters 1–9.
The study of the kinematics of a point as in Chapter 1 has the purpose of obtaining

the expressions that describe the temporal behavior of its position, speed, and accel-
eration. This chapter introduces the necessary basic concepts and shows how these
expressions are deduced. A fundamental aspect of the subject is that concerning the
coordinate system used, since the obtained mathematical expressions depend on it. In
view of the fact that the most natural system and therefore the employed one is the
Cartesian system, the generalized coordinates are defined based on this system. The
corresponding relationships that allow the transformation of the kinematic quantities
between different types of coordinates are obtained.

In Chapter 2 the concept of rigid body is introduced and quite general expressions
are obtained for the description of the kinematics of this mechanical entity. A funda-
mental tool for the study of the kinematics of the rigid body is Euler’s theorem, with
which important concepts such as angular speed and acceleration appear, and which
allows the calculation of the speed and acceleration of any point of the rigid body. In
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particular, this method can be extended to the case of the movement of a point in the
presence of a mobile relative coordinate system. This topic is addressed in the final
section. The description of rotations, using quaternions as generalized coordinates, is
also considered.

The motivation of Chapter 3 is the study of the relationship between the kinematic
quantities of a point system and their causes, that is, the forces. This study leads to the
introduction of important concepts, such as kinetic energy, momentum, impulse mo-
ment, and force moment, which will allow obtaining very important relations between
them.

The relationships obtained in the previous chapters are based on the consideration
that the “absolute reference system” is not accelerated. Systems in which this con-
dition is met are called inertial. In Chapter 4 the dynamics of non-inertial systems
are analyzed, that is, systems whose “absolute reference” undergoes an acceleration.
Another aspect of this chapter deals with the case when the mass is admitted to be
variable, which is another aspect of this chapter.

In Chapter 5 we continue with the study of the dynamics of solid bodies. The dy-
namic equations corresponding to the rotation of bodies and referred to as the dynamic
Euler equations are obtained. To do that, a fundamental concept of the geometry of the
solids is introduced, namely, the inertia tensor, which is key in the description of the
equations sought. The inertial tensor will allow calculating fundamental quantities
such as kinetic energy and impulse moment with reduced expressions. In the central
part of the chapter, the proposed objective is achieved, once some main properties of
the inertia tensor have been stated. The chapter concludes with the application (not
trivial, but very productive) of Euler’s equations to the study of special movements
such as the gyroscope and dynamic reactions. Some examples and exercises illustrate
the presented theory.

Newton’s second law and Euler’s dynamic equations are the formalism that allows
to obtain the equations of movement in mechanical systems; however, their applica-
tion is usually complicated if the geometry of the movement is not simple and/or by
the presence of restrictions to it. The Lagrange equations, whose study is addressed in
Chapter 6, are an essential tool for these cases, since they naturally include the con-
straints, in addition to being based on the concept of generalized coordinates, which
allow describing the dynamics in terms of the variables, associated with the degrees
of freedom of the system. This particularity also makes it possible to apply the same
formalism to electrical and even electromechanical systems. A fundamental part of
the Lagrange equations are the generalized forces, which characterize (constitute) the
essential part of these equations.

In dynamic systems in general and in mechanical systems in particular, the deter-
mination of equilibrium positions and their quality of stability are traditional problems
of fundamental importance, which to date have been partially resolved. In Chapter 7,
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based on the concepts and results obtained up to this point (such as coordinates and
generalized forces), the study of these topics is addressed and the most important re-
sults are reported. As will be seen, the most developed theory is that dealing with
conservative systems, which occupy most of the chapter.

The Lagrange equations are an invaluable tool in determining the important prop-
erties of mechanical systems. The application of these equations and the study of the
consequences derived have been the object of the two preceding chapters. In Chap-
ter 8 one more application is presented to the study of the important properties of
small oscillations of a system around the points of its equilibrium. By the usual tech-
nique of linearization around a point of equilibrium, the Lagrange equations can be
approximated by a linear expression that describes in sufficient detail the dynamics
of the system in a neighborhood sufficiently close to the point of interest. In this ap-
proximate expression all known techniques for linear dynamic systems can be applied,
leading to very useful conclusions. In addition, if the considered system is restricted
to being of the conservative type, then the expression is reduced, which allows to
characterize and calculate its solutions in a very simple way.

In Chapter 9, the study of the linear systems obtained from the process of lineariza-
tion of the Lagrange equations is continued. This continuation covers two aspects:
first, the consideration of non-potential forces dependent only on time allows the use
of the important tool of Fourier transformation, which leads to the consideration of the
frequency response of the system; second, dissipative systems are considered, which
generalize to those of conservative type and allow the introduction of the concept of
asymptotically stable equilibrium, extending the previously discussed idea of equilib-
rium.

The Hamiltonian formalism is presented in Chapters 10 and 11.
In Chapter 10, conservative systems are considered and generalized impulses are

introduced. Hamilton’s variables are also considered and it is demonstrated that they
can completely describe the dynamics of a system in the canonical Hamiltonian for-
mat. Some properties of these canonical equations are studied as well as their first
integrals.

The canonical transformations of the dynamic variables, describing Hamiltonians
in new variables, are considered in Chapter 11. Several criteria of canonicity (such as
the S-criterion) is studying. The Hamilton–Jacobi (HJ) equation (partial differential
equation) that corresponds to Hamilton’s canonical equations (the system of ordinary
differential equations [ODEs]) is also considered.1 Its complete integrals are found.
The considered technique allows to find the solution of the canonical Hamiltonian
equation without direct resolution of the corresponding system of ODEs, but resolv-
ing only the system of special nonlinear algebraic equations. This chapter also shows
the relation between the HJ equation in mechanics of conservative systems and the
dynamic programming method in optimal control theory.

1 It is named after William Rowan Hamilton and Carl Gustav Jacob Jacobi.
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Some models of electromechanical systems (such as a robot of the PUMA type,
the pendubot, DC and induction motors, and also a power converter) are developed in
Chapter 12.

The formulations of the majority of the presented exercises have been taken from
(Pyatnickii et al., 1996).

The basic idea of this book is to build a bridge between theory and practice
related to mechanical, electrical, and electromechanical systems.
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The study of point kinematics has the purpose to obtain the expressions that describe
the temporal behavior of its position, speed, and acceleration. This chapter introduces
the necessary basic concepts and shows how these expressions are deduced. A funda-
mental aspect of the subject concerns the coordinate system used, since the obtained
mathematical expressions depend on it. In view of the fact that the most natural system
and therefore the employed one is the Cartesian system, the generalized coordinates
are defined based on this concrete system. The relationships that allow the transforma-
tion of the kinematic quantities between different types of coordinates are obtained.

1.1 Products of vectors

In the following presentation two operations on vectors are defined. The product, being
one of the most interesting both in its scalar and in its vectorial mode, and its most
important properties are obtained.

Classical and Analytical Mechanics. https://doi.org/10.1016/B978-0-32-389816-4.00012-0
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1.1.1 Internal (scalar) product

Fig. 1.1 illustrates the details of the following two definitions related to the so-called
internal or scalar product.

Figure 1.1 The projection of the vector b to the direction of another vector a.

Definition 1.1. For the two vectors a and b, the component compb
a of b over a is

defined as

compb
a := b cos

(

â,b
)

. (1.1)

Definition 1.2. The internal or scalar product (a,b) of vectors a and b is the scalar,
defined as

(a,b) := ab cos
(

â,b
)= a compb

a . (1.2)

The main properties of the scalar product (1.2) are described in the following
lemma.

Lemma 1.1 (The main properties of the internal or scalar product). Let a, b, c be
vectors in R

3.

1. Commutativity: We have

(a,b) = (b,a) .

2. Distributivity: We have

(a, (b + c)) = (a,b) + (a, c) .

3. Criterion of parallelism: If a, b �= 0, then

(a,b)

ab
=
{

1, if and only if the vectors a and b are parallel,

−1, if and only if the vectors a and b are antiparallel.

4. Orthogonality criterion: If a, b �= 0, then

(a,b) = 0

if and only if the vectors a and b are orthogonal, that is, a ⊥ b.
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5. Magnitude (length) of a vector: This is defined as

a =√

(a,a).

Proof. Both vectors a and b have the following representation:

a = aq1k1 + aq2k2 + aq3 k3,

b = bq1k1 + bq2k2 + bq3 k3,

}

(1.3)

where the unitary vectors k1, k2, k3 satisfy the relation

(

ki ,kj

)= δi,j (1.4)

with

δi,j :=
{

1, i = j,

0, i �= j,
i, j = 1,2,3,

referred to as the Kronecker symbol. So,

(a,b) = aq1bq1 + aq2bq2 + aq3bq3 . (1.5)

Properties 1, 3, 4, and 5 immediately follow from the definition. As for property 2, it
results from the projection property:

(a, (b + c)) = acompb+c
a = a

(

compb
a + compc

a

)

= (a,b) + (a, c) .

Remark 1.1. By the definition (1.2) and properties 1 and 2 it follows that the scalar
product is a bilinear operation.

1.1.2 Vector product

Now we present the basic concepts related to the vector product, whose details are
illustrated in Fig. 1.2.

Figure 1.2 Vector product of two vectors a and b.
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Definition 1.3. For a,b ∈ R
3 their vector product, denoted by

c := [a,b] ,

is defined as the vector which is orthogonal to the plane, formed by a and b, with the
direction of the advance of a right screw that follows the rotation of a to b and with
the magnitude

c = ab sinα, (1.6)

where α := â,b.

As can be seen from Fig. 1.2, the area of the parallelogram, formed by a and b, is
given by

A = ah,

with

h = b sinα,

that is,

c = A = |[a,b]| .
From the definition of the vector product it is possible to obtain several conse-

quences, which are given in the following lemma.

Lemma 1.2 (Properties of the vector product). For any three vectors a,b, c ∈ R
3 the

following properties hold:

1. Anticommutativity, i.e.,

[a,b] = − [b,a] .

2. Distributivity on the sum, i.e.,

[a, (b + c)] = [a,b] + [a, c] .

3. Criterion of parallelism: If a, b �= 0, then

[a,b] = 0

if and only if a and b are parallel.
4. Orthogonality criterion: If a, b �= 0, then

|[a,b]|
ab

= 1

if and only if a and b are orthogonal.
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5. Vector products between the unit vectors: If the unit vector system (k1,k2,k3),
associated with the generalized coordinates q, is orthogonal and has the configu-
ration as in Fig. 1.3, then

[k1,k2] = k3, [k2,k3] = k1, [k3,k1] = k2.

Figure 1.3 Right orthogonal system.

6. Explicit formula: If

a = aq1 k1 + aq2 k2 + aq3 k3,

b = bq1 k1 + bq2 k2 + bq3 k3,

}

then

[a,b] = (

aq2bq3 − aq3bq2

)

k1+
(

aq3bq1 − aq1bq3

)

k2 + (

aq1bq2 − aq2bq1

)

k3

}

(1.7)

making use of the determinant concept matches as

[a,b] =

∥
∥
∥
∥
∥
∥
∥

k1 k2 k3

aq1 aq2 aq3

bq1 bq2 bq3

∥
∥
∥
∥
∥
∥
∥

.

Proof. Properties 1, 3, 4, and 5 are obtained directly from the definition of the vector
product. The demonstration of property 2 is left as an exercise to the reader, while
property 6 follows immediately from properties 1, 2, and 5.

Remark 1.2. Again, it is easy to follow the definition (1.6) and properties 1 and 2 and
verify that the vector product is bilinear.

In the following definitions three vectors are involved, so the considered operations
are referred to as triple products.

Definition 1.4. Given vectors a,b, c ∈ R3, the scalar

(a, [b, c])

is called the triple scalar product, while the vector

[a, [b, c]]

is called the triple vector product.



6 Classical and Analytical Mechanics

1.1.3 Main properties of triple products

The following lemma presents some useful properties of triple products.

Lemma 1.3 (Properties of triple products). For any vectors

a,b, c ∈ R
3

the following properties hold:

1. Alternate formula of the triple scalar product: Under the condition of orthogonal-
ity of the unit vectors (k1,k2,k3) by the representation

a = aq1 k1 + aq2 k2 + aq3 k3,

b = bq1 k1 + bq2 k2 + bq3 k3,

c = cq1 k1 + cq2 k2 + cq3 k3,

⎫

⎪⎬

⎪⎭

(1.8)

it follows that

(a, [b, c]) = det

∥
∥
∥
∥
∥
∥
∥

aq1 aq2 aq3

bq1 bq2 bq3

cq1 cq2 cq3

∥
∥
∥
∥
∥
∥
∥

. (1.9)

2. Cyclic rotation of the triple scalar product: We have

(a, [b, c]) = (b, [c,a]) = (c, [a,b]) . (1.10)

3. Alternate formula of the triple vector product: We have

[a, [b, c]] = b (a, c) − c (a,b) . (1.11)

4. Jacobi’s identity: We have

[a, [b, c]] + [b, [c,a]] + [c, [a,b]] = 0. (1.12)

Proof. By (1.5) and (1.7) we have

(a, [b, c]) = aq1

(

bq2cq3 − bq3cq2

)+
aq2

(

bq3cq1 − bq1cq3

)+ aq3

(

bq1cq2 − bq2cq1

)

,
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which coincides with (1.9). Property 2 follows immediately from the property of the
determinants. To show property 3, note that

[a, [b, c]] =

∥
∥
∥
∥
∥
∥
∥

k1 k2 k3

aq1 aq2 aq3

bq2cq3 − bq3cq2 bq3cq1 − bq1cq3 bq1cq2 − bq2cq1

∥
∥
∥
∥
∥
∥
∥

= [

bq1

(

aq2cq2 + aq3cq3

)− cq1

(

aq2bq2 + aq3bq3

)]

k1

+ [

bq2

(

aq1cq1 + aq3cq3

)− cq2

(

aq1bq1 + aq3bq3

)]

k2

+ [

bq3

(

aq1cq1 + aq2cq2

)− cq3

(

aq1bq1 + aq2bq2

)]

k3

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.13)

and

b (a, c) − c (a,b) =
(

bq1 k1 + bq2 k2 + bq3 k3
) (

aq1cq1 + aq2cq2 + aq3cq3

)

− (

cq1 k1 + cq2 k2 + cq3k3
) (

aq1bq1 + aq2bq2 + aq3bq3

)=
[

bq1

(

aq1cq1 + aq2cq2 + aq3cq3

)− cq1

(

aq1bq1 + aq2bq2 + aq3bq3

)]

k1

+ [

bq2

(

aq1cq1 + aq2bq2 + aq3cq3

)− cq2

(

aq1bq1 + aq2bq2 + aq3bq3

)]

k2

+ [

bq3

(

aq1cq1 + aq2cq2 + aq3cq3

)− cq3

(

aq1bq1 + aq2bq2 + aq3bq3

)]

k3.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.14)

Direct comparison of (1.13) with (1.14) leads to (1.11). The application of property 3
to the left-hand side of (1.12) implies

[a, [b, c]] + [b, [c,a]] + [c, [a,b]] =
b (a, c) − c (a,b) + c (a,b) − (b, c)a + (b, c)a − b (a, c) = 0.

Remark 1.3. If in formula (1.11) we put c = a with a �= 0, then we get

b = (a,b)

a2
a + [a, [b,a]]

a2
, (1.15)

that is, any vector b can be represented as a linear combination of a vector a and the
vector which is perpendicular to a being contained in the plane formed by a and b.

The following exercise demonstrates the effectiveness of the direct application of
formula (1.15).

Example 1.1. Consider the following system of four algebraic equations with respect
to the components of the vector r ∈ R

3:

(r,a) = m,

[r,a] = b,

}
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where vectors a,b ∈ R
3 and the scalar m ∈ R are supposed to be given. We need to

find r. Taking in (1.15) b = r we get

r = (a, r)
a2

a + [a, [r,a]]

a2
= m

a2
a + [a,b]

a2
.

1.2 Generalized coordinates

1.2.1 Different possible coordinates

Let p be a moving point in space and let r(t) be the vector that describes its position at
time t with respect to some given reference system. The description of r can be carried
out in as many ways as possible with the reference system. Within these descriptions,
the most used reference system is the Cartesian system, but in certain problems it may
be more natural to use others, for example, representations in cylindrical or spherical
coordinates. In Fig. 1.4 these three types of description and their relationships are
shown.

Figure 1.4 Cartesian, cylindrical, and spherical vector representations and their relations.

1.2.2 Definition of generalized coordinates

The relationship between different vectorial descriptions of the position of the point p

has special importance in the derivation of the expressions that describe its movement,
such as the expressions of position, speed, and acceleration.

Definition 1.5. A triad of numbers q = (q1, q2, q3) that allow to uniquely specify the
position of a point p in space is said to form a set of generalized coordinates of p.
The set of generalized coordinates q of all points of a system in space is called the
coordinate system corresponding to the generalized coordinates q.

It is clear that the Cartesian coordinates form a system of generalized coordinates
too.
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1.2.3 Relationship of generalized coordinates with Cartesian

Criterion 1.1. The set of all possible triads q = (q1, q2, q3), where qi ∈ Si ⊆ R

(i = 1,2,3), forms a generalized coordinate system if and only if there is a one-to-
one relationship between the Cartesian description r = (x, y, z) of each point p ∈ R

3

and a triad q = (q1, q2, q3).

In other words, the previous definition states that set

S := {q = (q1, q2, q3) , qi ∈ Si ⊆ R, i = 1,2,3} ⊆ R
3

forms a generalized coordinate system if and only if the mapping

r : S → R
3

given by

r = r (q) (1.16)

with

r = (x, y, z)ᵀ (1.17)

constitutes a one-to-one transformation.
The following criterion characterizes this transformation.

Lemma 1.4. A vector function r (q) :R3 → R
3 is a one-to-one smooth transformation

if and only if the derivative of r, called the Jacobian matrix of r, given by

∂r
∂q

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂r1

∂q1

∂r1

∂q2

∂r1

∂q3
∂r2

∂q1

∂r2

∂q2

∂r2

∂q3
∂r3

∂q1

∂r3

∂q2

∂r3

∂q3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

is not singular, which in turn is satisfied if and only if for all x, y, and z

det

(
∂r
∂q

)

�= 0. (1.18)

The existence of the transformation (1.16) ensures that the Cartesian coordinates
of a point p can be determined from the triad q by some functions

x = x(q1, q2, q3), y = y(q1, q2, q3), z = z(q1, q2, q3).

If a set of coordinates has the property (1.18), you can easily derive the expressions
that describe the kinematics of the moving point they represent from those correspond-
ing to the description in Cartesian coordinates and vice versa. This derivation requires
some concepts, which are introduced next.
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Definition 1.6. Suppose that in the transformation (1.16) two constant generalized
coordinates are maintained and the other one is allowed to vary; the generated curve
is known as the coordinate curve corresponding to the variable coordinate, and the
direction that such a curve follows when the coordinate increases is said to be its
positive direction. A system of generalized coordinates is called rectilinear if its
coordinate curves are straight; if they result as curves, then it is called curvilinear.

The coordinate curves make it possible to determine the unit vectors of the gener-
alized coordinate system in question. The unitary vector, corresponding to the coordi-
nate qi , i = 1,2,3, is given by the positive direction of the tangent to the coordinate
curve corresponding to qi . This concept is formalized in the following two definitions.

1.2.4 Coefficients of Lamé

Definition 1.7. The values

Hi :=
∣
∣
∣
∣

∂r
∂qi

∣
∣
∣
∣
=
√
(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

, i = 1,2,3, (1.19)

are called the Lamé coefficients corresponding to the generalized coordinates q.

Definition 1.8. The vectors

ki := 1

Hi

∂r
∂qi

, i = 1,2,3, (1.20)

are referred to as the unit vectors of the generalized coordinate q.

The defined unit vectors constitute the base in the space of the generalized coordi-
nate q. Note that in general these bases are not orthogonal; besides, they vary from one
point to another. For this last reason they are known as local bases. By the previous
concepts, given a system of generalized coordinates q, the representation of a generic
vector p with respect to this system is given by

p = pq1 k1 + pq2k2 + pq3 k3, (1.21)

where pqi
, i = 1,2,3, is the component of the point p on the coordinate qi .

1.3 Kinematics in generalized coordinates

The concepts introduced up to now allow to obtain in a simple way the expressions
for the speed and acceleration of a mobile particle p, when the description is made in
the generalized coordinates q.
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1.3.1 Velocity in generalized coordinates

Let r (t) be the vector that describes the position at time t of the moving point p in the
Cartesian coordinate space. The velocity v of the point p is defined as the temporal
derivative of the position vector r (t):

v := dr
dt

.

Now let a system be given in generalized coordinates q. Then there is a transformation

r (t) = r (q (t))

such that, by the rule of chain differentiation,

v = d

dt
r (q (t)) = ∂r

∂q1
q̇1 + ∂r

∂q2
q̇2 + ∂r

∂q3
q̇3, (1.22)

where

q̇i := dqi

dt
, i = 1,2,3.

Now, using the definitions of the coefficients of Lamé (1.19) and of the unit vec-
tors (1.20) for the coordinate system q, expression (1.22) can be rewritten in the form

v =
3
∑

i=1

Hiq̇iki , (1.23)

where

vqi
:= Hiq̇i, i = 1,2,3, (1.24)

is the component of vector v in direction ki .

Remark 1.4. The magnitude of v is given by

v =√〈v,v〉, (1.25)

and by (1.24), if the system q is orthogonal, formula (1.25) is reduced to

v =
√
√
√
√

3
∑

i=1

H 2
i q̇2

i . (1.26)

1.3.2 Acceleration in generalized coordinates

The acceleration of point p is defined as the temporal derivative of its velocity vector,
that is,

w := dv
dt

. (1.27)



12 Classical and Analytical Mechanics

Since in the generalized coordinates, v is given by (1.22), the expression of w in these
coordinates is presented as

w = d

dt

(
∂r
∂q1

q̇1 + ∂r
∂q2

q̇2 + ∂r
∂q3

q̇3

)

,

whose development leads to an expression of complex structure. A simpler expres-
sion can be obtained by an alternate method: note that in the generalized coordinate
system q, the acceleration vector w has an expression of the form

w = wq1 k1 + wq2k2 + wq3k3. (1.28)

In the case when the generalized coordinate system is orthogonal, satisfying

(

ki ,kj

)= δij :=
{

1, if i = j,

0, if i �= j,

where δij is the Kronecker symbol, the i-th component wqi (i = 1,2,3) may be rep-
resented as

wqi
= (ki ,w) , (1.29)

or, using the definition (1.20) of ki ,

wqi
= 1

Hi

(
∂r
∂qi

,w
)

, (1.30)

we may conclude that

Hiwqi
=
(

∂r
∂qi

,
dv
dt

)

. (1.31)

The additional steps require some relationships, which are the subject of the following
lemma.

Lemma 1.5. The vector v (see (1.22)) complies with the following relationships for
all i = 1,2,3:

∂v
∂q̇i

= ∂r
∂qi

, (1.32)

d

dt

∂r
∂qi

= ∂v
∂qi

. (1.33)

Proof. Since r is not a function of q̇i and
∂q̇j

∂q̇i

= δij , equality (1.32) follows directly

from (1.22):

∂v
∂q̇i

=
3
∑

j=1

∂

(
∂r
∂qj

q̇j

)

∂q̇i

=
3
∑

j=1

(
∂2r

∂q̇i∂qj

q̇j + ∂r
∂qj

∂q̇j

∂q̇i

)

= ∂r
∂qi

, i = 1,2,3.
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Since in mechanics the function r = r(t) during any admissible movement is assumed
to be smooth we have

∂2r
∂qj ∂qi

= ∂2r
∂qi∂qj

,

which implies

d

dt

∂r
∂qi

=
3
∑

j=1

∂

(
∂r
∂qi

)

∂qj

q̇j =
3
∑

j=1

∂2r
∂qi∂qj

q̇j = ∂

∂qi

3
∑

j=1

∂r
∂qj

q̇j = ∂v
∂qi

.

Remark 1.5. The derivative of the scalar product of two vector functions f(t) and
ϕ(t) results in

d

dt
(f(t),ϕ(t)) =

(
d

dt
f,ϕ

)

+
(

f,
d

dt
ϕ

)

,

implying
(

f,
d

dt
ϕ

)

= d

dt
(f(t),ϕ(t)) −

(
d

dt
f,ϕ

)

. (1.34)

As the result of (1.34), for the right-hand side of (1.31) we have
(

∂r
∂qi

,
d

dt
v
)

= d

dt

(
∂r
∂qi

,v
)

−
(

d

dt

∂r
∂qi

,v
)

, (1.35)

and, by the relations (1.32) and (1.33), it follows that

Hiwqi
= d

dt

(
∂v
∂q̇i

,v
)

−
(

∂v
∂qi

,v
)

. (1.36)

The following definition is required to obtain the desired final expression for wqi
.

Definition 1.9. Consider a particle of mass m and velocity v. The amount

T := m

2
v2 = m

2
〈v,v〉 (1.37)

will be referred to as the kinetic energy of this particle.

Using the concept of kinetic energy with m = 1, formula (1.36) can be equivalently
represented as

Hiwqi
= d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi

,
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which finally leads to

wqi
= 1

Hi

[
d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi

]

. (1.38)

In view of (1.38) and using the representation

w =√

(w,w), (1.39)

we get

w =
√
√
√
√

3
∑

i=1

1

H 2
i

[
d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi

]2

, (1.40)

keeping in mind that coordinate system q is orthogonal.

1.4 Movement in the cylindrical and spherical coordinate
systems

The importance of the concepts introduced before and the obtained relations are em-
phasized in the examples presented below.

1.4.1 Movement in cylindrical coordinates

The position of a particle in space is referred to using a cylindrical coordinate sys-
tem, as illustrated in Fig. 1.5. We need to get the expressions for the velocity and
acceleration vectors with respect to these coordinates.

Figure 1.5 Representation of a point’s position in cylindrical coordinates.

Following the used notation, we have

q1 = ρ, q2 = ϕ, q3 = z,
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where

q1 ≥ 0, 0 ≤ q2 < 2π, −∞ < q3 < ∞,

and from Fig. 1.5 it is easy to conclude that

x = ρ cosϕ = q1 cosq2,

y sinϕ = q1 sinq2,

z = q3,

⎫

⎪⎬

⎪⎭

(1.41)

which defines the component transformation from Euclidian to the generalized coor-
dinates q. Using (1.41) and (1.19), it is easy to obtain the Lamé coefficients. Indeed,
the partial derivatives of functions (1.41) with respect to q1 are given by

∂x

∂q1
= cosq2,

∂y

∂q1
= sinq2,

∂z

∂q1
= 0,

which results in

H1 = 1.

By the same manner, the partial derivatives of functions (1.41) with respect to q2 and
q3 are

∂x

∂q2
= −q1 sinq2,

∂y

∂q2
= q1 cosq2,

∂z

∂q2
= 0,

∂x

∂q3
= 0,

∂y

∂q3
= 0,

∂z

∂q3
= 1,

implying

H2 = q1 = ρ

and

H3 = 1.

Having the expressions for the Lamé coefficients, the velocity components in the co-
ordinates q immediately follow from (1.24):

vq1 = q̇1, or vρ = ρ̇,

vq2 = q1q̇2, or vϕ = ρϕ̇,

vq3 = q̇3, or vz = ż.

Substitution of these expressions in (1.26) in view of the orthogonality of the system q
implies that

v =
√

ρ̇2 + ρ2ϕ̇2 + ż2.
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This expression permits to calculate the kinetic energy (1.37), which for m = 1 results
in

T = 1

2

(

ρ̇2 + ρ2ϕ̇2 + ż2
)

.

By (1.38) we conclude that

wq1 = wρ = d

dt
(ρ̇) − ρϕ̇2 = ρ̈ − ρϕ̇2,

wq2 = wϕ = 1

ρ

[
d

dt

(

ρ2ϕ̇
)

− 0

]

= 1

ρ

(

2ρρ̇ϕ̇ + ρ2ϕ̈
)

= 2ρ̇ϕ̇ + ρϕ̈,

wq3 = wz = d

dt
(ż) − 0 = z̈.

1.4.2 Movement in spherical coordinates

Consider the same particle of the previous example, but now with its position referred
to using a spherical coordinate system (the situation is shown in Fig. 1.6). Get again
the expressions for velocity and acceleration vectors with respect to these coordinates.
Now the coordinates q are

q1 = r, q2 = ϕ, q3 = θ,

Figure 1.6 Representation of a point’s position in spherical coordinates.

where

q1 ≥ 0, 0 ≤ q2 < 2π, 0 ≤ q3 ≤ π.

Using Fig. 1.6, we have the relations

x = r sin θ cosϕ = q1 sinq3 cosq2,

y = r sin θ sinϕ = q1 sinq3 sinq2,

z = r cos θ = q1 cosq3,

⎫

⎪⎬

⎪⎭

(1.42)
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which, as can be easily checked, constitutes the coordinate transformation, so that q
composes a system of generalized coordinates. The partial derivatives of the functions
in (1.42) with respect to q1 are as follows:

∂x

∂q1
= sinq3 cosq2,

∂y

∂q1
= sinq3 sinq2,

∂z

∂q1
= cosq3,

which, according to (1.19), gives

H1 =
√

(sinq3 cosq2)
2 + (sinq3 sinq2)

2 + (cosq3)
2 = 1.

Proceeding in a similar way, the partial derivatives of the functions in (1.42) with
respect to q2 and q3 result in

∂x

∂q2
= −q1 sinq3 sinq2,

∂y

∂q2
= q1 sinq3 cosq2,

∂z

∂q2
= 0,

∂x

∂q3
= q1 cosq3 cosq2,

∂y

∂q3
= q1 cosq3 sinq2,

∂z

∂q3
= −q1 sinq3,

which leads to

H2 =
√

(−q1 sinq3 sinq2)
2 + (q1 sinq3 cosq2)

2 = q1 sinq3 = r sin θ,

H3 =
√

(q1 cosq2 cosq3)
2 + (q1 sinq2 cosq3)

2 + (−q1 sinq3)
2 = q1 = r.

The calculated Lamé coefficients and (1.24) allow to determine the components of
velocity with respect to the system q:

vq1 = q̇1, or vr = ρ̇,

vq2 = q1q̇2 sinq3, or vϕ = rϕ̇ sin θ,

vq3 = q1q̇3, or vθ = rθ̇ .

⎫

⎪⎬

⎪⎭

(1.43)

The presentation (1.43) together with (1.26) (taking into account that this system of
coordinates q is orthogonal) permits to conclude that the magnitude v of the velocity
v is given by

v =
√

ρ̇2 + (rϕ̇ sin θ)2 + (

rθ̇
)2

and, by (1.37), we obtain the “kinetic energy” with m = 1 as

T = 1

2

(

ρ̇2 + r2ϕ̇2 sin2 θ + r2θ̇2
)

.
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Based on this representation and applying (1.38), we finally get the formulas for the
acceleration components in the spherical coordinates q:

wq1
= wr = d

dt
ρ̇ − rϕ̇2 sin2 θ − rθ̇2 = r̈ − r

(

ϕ̇2 sin2 θ + θ̇2
)

,

wq2
= wϕ = 1

r sin θ

[
d

dt

(

r2ϕ̇ sin2 θ
)

− 0

]

=
r
(

ϕ̈ sin θ + 2ϕ̇θ̇ cos θ
)+ 2ρ̇ϕ̇ sin θ,

wq3
= wθ = 1

r

[
d

dt

(

r2θ̇
)

− r2ϕ̇2 sin θ cos θ

]

=

r
(

θ̈ − ϕ̇2 sin θ cos θ
)

+ 2ρ̇θ̇ .

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.44)

1.5 Normal and tangential accelerations

A particle in motion, in general, is subject to an acceleration that can be seen as con-
sisting of two perpendicular components: one tangential to the trajectory, responsible
for the change in the magnitude of the moving point speed, and another one normal,
characterizing its direction change.

Fig. 1.7 shows the directions of these accelerations and their relation to the trajec-
tory, where τ and n are unit vectors in the tangential and normal directions, respec-
tively.

Figure 1.7 Normal and tangential vectors to the trajectory.

In the orthogonal Cartesian system, formed by vectors τ and n, the acceleration w
can be represented as

w = wτ τ + wnn, (1.45)

where, in particular,

wτ = dv

dt
,
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with v being the magnitude of the velocity at point p. Regarding the component wn,
its value is given in the following lemma.

Lemma 1.6. If the radius ρ of the curvature of the trajectory at point p is non-equal
to zero, namely,

ρ �= 0,

then the normal component wn of the acceleration w in the point p is expressed by

wn = v2

ρ
. (1.46)

Proof. Since the normal component of the acceleration is only responsible for the
change in the direction of the velocity, to determine its normal component we may
consider that the magnitude of the velocity is constant.

Figure 1.8 Speeds, radii, and centers of curvature in two different instants.

Fig. 1.8 shows a segment of the trajectory of the particle in Fig. 1.7 with the velocity
vectors and the radii of curvature in two instants of time: in instant t it is assumed that
the particle has velocity v (t) at point A of the trajectory, where the radius of curvature
is denoted by ρ (t) and its center is located at point O1; at the second instant, t + 	t ,
the particle is at point B with velocity v(t + 	t) and the trajectory has radius of
curvature ρ(t + 	t) and its center at O2. The point at which the radii of curvature
intersect is denoted by O. Points A and C are on a circle with center O, so they are at
the corresponding distance from this center: A on ρ(t) and C over ρ(t + 	t).

Figure 1.9 The detail of the previous figure.

Part (a) of Fig. 1.9 shows in detail the triangle ADE formed by the velocities v(t)

and v(t + 	t), which is isosceles in view of the fact that the magnitude of speed
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remains constant. On the other hand, part (b) of the same figure shows in detail the
isosceles triangle ACO in Fig. 1.8. Clearly these two triangles are similar, and the
following relationship can be established:

DE

v
= AC

AO
,

where AC, DE, and AO represent the distances between the points in question. From
the previous relationship, dividing by the time difference and taking the limit when it
tends to zero, we get

lim
	t→0

DE

	t
= v lim�t→0

1

AO

AC

	t
.

But

AC → 	s and AO → ρ (t) when 	t → 0,

where s is the displacement on the path made by the particle. These considerations
and the fact that

v = ds

dt

lead to the final expression

wn := lim
	t→0

DE

	t
= v2

ρ
.

Although the test was done considering that the movement is planar, the above is
valid in the three-dimensional case, since in the limit the latter tends to the first.

The previous lemma involves the radius of curvature ρ of the trajectory. In the
following exercise useful expressions are given for the calculation of this important
element.

1.6 Some examples

Example 1.2. The ring in Fig. 1.10 moves with constant velocity of magnitude v on
the fixed wire whose configuration is described by the function

y = ax2, a > 0. (1.47)

Determine the components of the acceleration w experienced by the ring, as well as
its magnitude, as a function of the abscissa x.
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Figure 1.10 Ring moving with a constant magnitude speed.

Since the reference system is Cartesian, it is verified that

vx = ẋ, vy = ẏ

and

wx = ẍ, wy = ÿ.

Hence

v2 = ẋ2 + ẏ2, w2 = ẍ + ÿ2. (1.48)

The expression for x is obtained from (1.47), noting that

ẏ = 2axẋ. (1.49)

This expression, being substituted in the first relation (1.48), transforms it into

v2 =
(

1 + 4a2x2
)

ẋ2,

implying

ẋ2 = v2

1 + 4a2x2
. (1.50)

The implicit temporal derivation of this expression, considering that v is constant,
leads to

ẍ = − 4a2v2x
(

1 + 4a2x2
)2 (1.51)

since ẋ �= 0 by (1.50). On the other hand, to obtain the corresponding function ÿ let us
derive (1.49):

ÿ = 2a
(

ẋ2 + xẍ
)

.

This expression, after substitution of (1.50) and (1.51), becomes

ÿ = 2av2

(

1 + 4a2x2
)2 . (1.52)
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The determination of w is immediate once you have functions (1.51) and (1.52). Sub-
stitution of these functions in the second expression in (1.48) results in

w = 2av2

(

1 + 4a2x2
)3/2

.

Example 1.3. A particle that moves in the three-dimensional Cartesian space in
Fig. 1.11 is subject to the acceleration given by

w(t) = [a,v(t)] , (1.53)

Figure 1.11 Trajectory of a particle in a Cartesian system.

where a is a constant vector. Find the coordinates of the position as functions of time.
In view of the definition w = v̇ the differentiation of (1.53) leads to

ẇ = [a, v̇(t)] = [a,w] ,

where

ẇ =

∥
∥
∥
∥
∥
∥
∥

i j k

ax ay az

wx wy wz

∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥

i j k

ax ay az

ẍ ÿ z̈

∥
∥
∥
∥
∥
∥
∥

(1.54)

with i, j, and k as the unitary vectors in the directions of the coordinate axes x, y, and
z, respectively. From the development of expression (1.54) the vector components of
the acceleration derivative may be obtained:

ẇx = ...
x = ayz̈ − azÿ,

ẇy = ...
y = −axz̈ + azẍ,

ẇz = ...
z = axÿ − ayẍ,

⎫

⎪⎬

⎪⎭

or in matrix form,
⎡

⎢
⎣

...
x
...
y
...
z

⎤

⎥
⎦=

⎡

⎢
⎣

0 −az ay

az 0 −ax

−ay ax 0

⎤

⎥
⎦

⎡

⎢
⎣

ẍ

ÿ

z̈

⎤

⎥
⎦ . (1.55)
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Using the notation

A :=
⎡

⎢
⎣

0 −az ay

az 0 −ax

−ay ax 0

⎤

⎥
⎦ , � :=

⎡

⎢
⎣

ẍ

ÿ

z̈

⎤

⎥
⎦ ,

Eq. (1.55) can be rewritten as

�̇ = A�, � (0) = �0,

where �0 is the initial condition for the acceleration vector. The solution of this linear
differential equation is given by

� (t) = exp (At)�0,

which, after double integration, gives the solution of the initial problem:

⎡

⎣

x(t)

y(t)

z(t)

⎤

⎦=
∫ t

u=0

∫ u

τ=0
� (τ ) dτdu =

∫ t

u=0

∫ u

τ=0
exp (Aτ)dτdu�0 = A−1

∫ t

u=0

∫ u

τ=0
exp (Aτ)d (Aτ)du�0 =

A−1
∫ t

u=0

[

exp (Au) − I
]

du�0 = A−2
∫ t

u=0

[

exp (Au) − I
]

d (Au)�0 =

A−2 [exp (At) − I − At
]

�0 =
[

A−2 exp (At) − A−2 − A−1t
]

�0.

Note that here matrix A is assumed to be invertible and the function exp (At) is the
matrix exponent defined as

exp (At) =
∞
∑

k=0

1

k! (At)k .

Example 1.4. Consider the particle from the previous exercise, whose acceleration is
given by

w(t) = [a,v(t)] , (1.56)

with a as a constant. Show that in such a case the magnitudes of w(t) and v(t) are
constant.

By the condition (1.56) we have

w(t) = dv(t)

dt
= [a,v(t)] . (1.57)
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Multiplying scalarly both sides by v(t) and taking into account that vectors v(t) and
[a,v(t)] are orthogonal, we get

(

v(t),
dv(t)

dt

)

= (v(t), [a,v(t)]) = 0 for all t. (1.58)

But
(

v(t),
dv(t)

dt

)

= 1

2

d

dt
〈v(t),v(t)〉 = 1

2

d

dt
v2(t) = v(t)v̇(t),

and in view of (1.58), it follows that v̇(t) ≡ 0, or equivalently, v(t) is a constant. On
the other hand, deriving (1.56) leads to

dw(t)

dt
=
[

a,
dv(t)

dt

]

= [a,w(t)]

and by the same reasoning we may conclude that
(

w(t),
dw(t)

dt

)

= (w(t), [a,w(t)]) = 0 ∀t.

So,
(

w(t),
dw(t)

dt

)

= 1

2

d

dt
(w(t),w(t)) = 1

2

d

dt
w2(t) = w(t)ẇ(t) = 0,

from which it follows that necessarily w(t) is constant.

Example 1.5. A point moves following the elliptical path as in Fig. 1.12, in such a
way that the following restriction is met:

r2 (t) φ̇ (t) = k. (1.59)

Figure 1.12 Particle on an elliptical path.

If the equation of the ellipse is given by

r = P

1 + e cosφ
, (1.60)
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with P and e as known constants, we need to find wr and wφ as functions of r and φ,
namely,

wr = wr (r,φ) , wφ = wφ (r,φ) .

Define

q1 = r, q2 = φ,

where

r ≥ 0, 0 ≤ φ < 2π,

and by Fig. 1.12 we have

x = r cosφ = q1 cosq2,

y = r sinφ = q1 sinq2.

As can be verified very easily, these functions make up a one-to-one transformation,
and hence, the coordinates (r,φ) form a generalized coordinate system. The Lamé
coefficients are now determined:

Hi :=
√
(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

, i = 1,2,

and are given by

H1 = 1, H2 = q1,

taking into account that

∂x

∂q1
= cosq2,

∂y

∂q1
= sinq2,

∂x

∂q2
= −q1 sinq2,

∂y

∂q2
= q1 cosq2.

So, by (1.24), the velocity components are

vqi
:= Hiq̇i, i = 1,2,

or equivalently,

vq1 = q̇1, or vr = ṙ ,

vq2 = q1q̇2, or vφ = rφ̇.

Since the coordinate system in question is orthogonal, the kinetic energy, with m = 1,
is given by

T = 1

2
v2 = 1

2

(

q̇2
1 + q2

1 q̇2
2

)

,
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which allows the calculation of the components of the acceleration via expres-
sion (1.38):

wqi
= 1

Hi

[
d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi

]

, i = 1,2,

implying

wq1 = q̈1 − q1q̇
2
2 , or wr = r̈ − rφ̇2,

wq2 = 1

q1

d

dt

(

q2
1 q̇2

)

= 2q̇1q̇2 + q1q̈2, or wφ = 2ṙ φ̇ + rφ̈.
(1.61)

On the other hand, in view of (1.59) we have

φ̇ = k

r2

and by (1.60) it follows that

ṙ = Peφ̇ sinφ

(1 + e cosφ)2
= e

P
r2φ̇ sinφ = ke

P
sinφ.

Combining these equations we get

φ̈ = −2k
ṙ

r3
= −2k2e

P

sinφ

r3
,

r̈ = ke

P
φ̇ cosφ = k2e

P

cosφ

r2
.

Substitution of these relations into (1.61) leads to the final representation which we
are interested in:

wr = k2

Pr2

(

e cosφ − P

r

)

= − k2

Pr2
,

wφ = 0.

⎫

⎪⎬

⎪⎭

(1.62)

Example 1.6. Let the velocity v and the acceleration w be known. Determine the
expression for the calculation of the radius of curvature ρ. The sought expression can
be obtained in two different ways.

1) By the relation (1.15), taking

b = w and a = v,

we have

w = 〈v,w〉
v2 v + [v, [w,v]]

v2 ,
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where the vectors v and [v, [w,v]] are orthogonal. Considering the representation

v = vτ

and taking into account that the vector
[v, [w,v]]

v2
has the direction n, by (1.45) it is

concluded that the tangential and normal accelerations are given, respectively, by

wτ = 〈v,w〉
v

(1.63)

and

wn = |[v, [w,v]]|
v2

. (1.64)

Here, applying (1.6), we have used the identity

|[v, [w,v]]| = v |[w,v]| ,
and since vectors v and [w,v] are orthogonal too, we get

wn = |[w,v]|
v

. (1.65)

Then, using the relation (1.46)

wn = v2

ρ
,

we conclude that

ρ = v3

|[w,v]| . (1.66)

2) From the vector diagram of Fig. 1.13 and considering the Pythagorean theorem,
one has

wn =
√

w2 − w2
τ . (1.67)

Figure 1.13 Acceleration vector composition.
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Now, taking from the first solution the relation (1.63) and replacing it in the previous
expression, formula (1.67) can be rewritten as

wn =
√

w2 − 〈v,w〉
v2

2

.

Again using the representation wn = v2

ρ
, it allows to express the radius of curvature

as

ρ = v2

√

w2 − 〈v,w〉
v2

2
. (1.68)

Although expressions (1.66) and (1.68), obtained in the previous exercise for the cal-
culation of ρ, seem different at first glance, they clearly must be equal. The following
steps show this fact. The following equality is verified:

v3

|[w,v]| = v2

√

w2 − 〈v,w〉
v2

2
.

Note that

〈v,w〉
v2

2

= w2 cos2 (v̂,w) ,

and hence,
√

w2 − 〈v,w〉
v2

2

=
√

w2
[

1 − cos2 (v̂,w)
]= w |sin (v̂,w)| = |[w,v]|

v
,

which gives the desired result.

1.7 Exercises

Exercise 1.1. A point describes a circle of radius R. The acceleration of the point
forms a constant angle α (α �= π/2) with its speed. Show that the speed of the point
increases by n times in time,

tn = n − 1

n

R

v0 cotα
,

if at the initial moment it equals v0.
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Exercise 1.2. The motion of a point in a plane is given in the polar coordinate system
by the components

vr = 1

r2
,

vϕ = 1

a r
, a = const �= 0.

Show that

r = r0 + a (ϕ − ϕ0) ,

wr = −r−3
(

2

r2
+ 1

a2

)

, wϕ = 0

if at the initial moment r (0) = r0 and ϕ (0) = ϕ0.

Exercise 1.3. The position of the point is determined by the dependence of its radius-
vector r on curvilinear orthogonal coordinates q1, q2, q3, namely,

r = f (q1, q2, q3) .

Assuming that the coordinates and their derivatives are known (measurable) at any
time t , show that the radius ρ of the trajectory curvature is

ρ =

(
3
∑

i=1

H 2
i q̇2

i

)3/2

⎡

⎣

(
3
∑

i=1

L2
i

H 2
i

)(
3
∑

i=1

H 2
i q̇2

i

)

−
(

3
∑

i=1

Liq̇i

)2⎤

⎦

1/2
,

where

Li = d

dt

∂

∂q̇i

(

1

2

3
∑

s=1

H 2
s q̇2

s

)

− ∂

∂qi

(

1

2

3
∑

s=1

H 2
s q̇2

s

)

.

Exercise 1.4. Show that the unit vectors τ , n, and b = [τ ,n] of the accompanying
trihedron (τ ,n,b) as functions of the velocity v and acceleration w vectors are as
follows:

τ = v
v
, n = v2w − (w,v)v

v ‖[v,w]‖ , b = [v,w]
‖[v,w]‖ ,

supposing that

[v,w] �= 0, (τ ,v) > 0.
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Exercise 1.5. When a point moves, the projection of its speed v on the OX-axis has
a constant value u. Prove that the relation

w = v3

uρ
(where ρ is the curvature radius)

is valid if and only if the trajectory of the point is a plane curve.

Although the speed and acceleration have been obtained by a similar derivation
process, they have very different characteristics. In particular, the acceleration is the
result of two very important acceleration components. The study of these elements
constitutes the motivation of the next chapter.
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In this chapter the concept of rigid body is introduced and fairly general expressions
are obtained for the description of the kinematics of this mechanical entity. A funda-
mental tool for the study of the kinematics of the rigid body is Euler’s theorem, where
important concepts such as angular speed and acceleration appear. This allows the
calculation of the speed and acceleration of the points of the body. In particular, this
method can be extended to the case of the movement of a point in the presence of a
mobile relative coordinate system. Matrix rotations and quaternions are addressed in
the final section.

2.1 Angular velocity

2.1.1 Definition of a rigid body

The following concepts are fundamental in this chapter.
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Definition 2.1. It is said that a set C of points in space forms a rigid body if

‖rA(t) − rB(t)‖ = const
t

for any points A,B ∈ C, (2.1)

where rA(t) and rB(t) are the position vectors of points A and B, with respect to some
reference point O. In other words, C is a rigid body if the distance between any of its
points remains invariant in time.

Definition 2.2. Suppose that C is a rigid body. Let the reference point O be such that

‖rA(t)‖ = const
t

for any point A ∈ C.

In such a case it is said that O is a pivot of the rigid body C. This situation is illustrated
in Fig. 2.1.

Figure 2.1 Rigid body with a pivot.

In physics, a rigid body is a solid body in which deformation is zero or so small it
can be neglected. The distance between any two given points on a rigid body remains
constant in time regardless of external forces exerted on it. A rigid body is usually
considered as a continuous distribution of mass.

2.1.2 The Euler theorem

The important movement in a rigid body in relation to a pivot is the rotation with
respect to this point. The following theorem characterizes this movement.

Theorem 2.1 (Euler). If O is a pivot of the rigid body C, there exists a vector ω(t)

such that

d

dt
rA(t) = [ω(t), rA(t)] , ∀A ∈ C, (2.2)

where rA(t) is the vector from the point O to the point A. It is important that ω(t)

does not depend on the point A.

Proof. Since O is a pivot of C, we have

rA(t) = const
t

, ∀A ∈ C,

and hence,

r2
A(t) = const

t
,
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or equivalently,

(rA(t), rA(t)) = const
t

.

The temporal derivative of this expression results in

d

dt
(rA(t), rA(t)) = 0, (2.3)

where, by the properties of the internal product,

d

dt
(rA(t), rA(t)) = 2 (ṙA(t), rA(t)) ,

implying

(ṙA(t), rA(t)) = 0,

which means that the vectors ṙA(t) and rA(t) are orthogonal, and therefore, there
exists a vector ω(t) such that

ṙA(t) = [ω(t), rA(t)] . (2.4)

Now, we need to show that ω(t) does not depend on the point A. By that reason, a
Cartesian coordinate system, originating in the pivot O and with respect to which C is
fixed, does not experience any movement. These conditions are illustrated in Fig. 2.2.
In this system of coordinates we have on one side

ω(t) = ωx(t)i (t) + ωy(t)j (t) + ωz(t)k (t) (2.5)

Figure 2.2 Rigid body with pivot O and a coordinate system fixed to the solid body.

and on the other

rA(t) = xAi (t) + yAj (t) + zAk (t) , (2.6)
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with xA, yA, and zA fixed as the coordinate system moves with C. So

ṙA(t) = xA

d

dt
i (t) + yA

d

dt
j (t) + zA

d

dt
k (t) . (2.7)

In view of the representations (2.6) and (2.5), for the right-hand side of (2.4) we obtain

[ω(t), rA(t)] = i
(

ωyzA − ωzyA

)+ j (ωzxA − ωxzA) + k
(

ωxyA − ωyxA

)

= xA

(

ωzj − ωyk
)+ yA (ωxk − ωzi) + zA

(

ωy i − ωxj
)

,

}

(2.8)

where the dependence of t has not been written in order to simplify the expressions.
Substitution of (2.7) and (2.8) in (2.4) allows us to obtain the following relationships:

d

dt
i = ωzj − ωyk,

d

dt
j = ωxk − ωzi,

d

dt
k = ωy i − ωxj,

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.9)

or equivalently,

ωx =
(

k,
d

dt
j
)

, ωy =
(

i,
d

dt
k
)

, ωz =
(

j,
d

dt
i
)

,

which shows that to characterize ω(t) it suffices to know the behavior of the unit
vectors of the chosen system located in the pivot, without any dependence on point A.

Definition 2.3. Given a pivot O of a rigid body C, the vector ω(t) that appears in Eu-
ler’s theorem, Theorem 2.1, is called the angular velocity of the body C with respect
to the point O, and the line, passing through O and coinciding with the direction of
ω(t), is referred to as the axis of rotation.

Three interesting conclusions emerge from the previous theorem, which are listed
below.

1. As expected by (2.2), from (2.9) it is verified that

d

dt
i = [ω, i] ,

d

dt
j = [ω, j] ,

d

dt
k = [ω,k] . (2.10)

2. From (2.2) it follows that if ω �= 0, then ṙA = 0 if and only if A is on the axis of
rotation.

3. A coordinate system can be seen as a rigid body. It is clear that the origin of the
system is a pivot. Since a generic vector r referenced to this coordinate system
can be expressed in the form

r = rer,
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with er as a unit vector in the direction of r, its derivative is given by

ṙ = ṙer + r ėr.

But

ėr = [ω, er]

for some ω, and

r [ω, er] = [ω, r]

results in the derivative of r:

ṙ = ṙer + [ω, r] . (2.11)

2.1.3 Joint rotation with a common pivot

The result that follows deals with the case presented in Fig. 2.3, in which a body is
subjected to rotations around different axes, but it is possible to refer all of them to a
common pivot.

Figure 2.3 Rotations with common pivot.

Lemma 2.1. If in the movement of a rigid body C we can distinguish several angular
velocities ωi , i = 1, ..., n, all of them referring to a common pivot O, then the vector

� = ω1 + ω2 + · · · + ωn

is such that any point p ∈ C has speed

vp = [�, rp

]

, (2.12)

where both vp and rp are referred to O.

Proof. By the superposition principle, the velocity of any point p ∈ C may be ex-
pressed as

vp =
n
∑

i=1

vi,p,
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where, since the pivot is common,

vi,p = [ωi , rp

]

,

and by the distributivity property of the vector product on the sum of vectors

vp =
[

n
∑

i=1

ωi,p, rp

]

.

So, the result is obtained.

2.1.4 Parallel and non-coplanar rotations

The following examples illustrate two cases: the first meets the conditions required in
the previous lemma, so that the present rotations can be reduced to one; the second
one does not.

Parallel rotation

The cylinder in Fig. 2.4 is simultaneously subjected to the coplanar angular velocities
ω1 and ω2 as illustrated. It goes on to show that these rotations can refer to the same
point, the common pivot, so there is an equivalent angular velocity.

Figure 2.4 Cylinder subject to two parallel rotations.

In Fig. 2.5 the diagram with vectors ω1 and ω2 is shown. The effect of this set is
not altered if the two vectors designated ω0 and −ω0 are added. This gives

ω′
1 := ω1 + ω0, ω′

2 := ω2 − ω0. (2.13)

Figure 2.5 Cylinder rotations.
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Immediately it is seen that a common pivot O can be identified for the vectors ω′
1 and

ω′
2, so that in view of the previous lemma there is the vector

� := ω′
1 + ω′

2,

which has the same joint effect of ω′
1 and ω′

2, but by (2.13) it follows that

� = ω1 + ω2.

The common pivot found depends on the magnitude of ω0 chosen, that is, the common
pivot for � is not unique, but all possibilities are on the same vertical, whose position
is now still determined. With regard to Fig. 2.5 we have

ω2

ω0
= c

a
,

ω1

ω0
= c

b
,

where

b = ω2

ω1
a. (2.14)

Since

l = a + b,

in combination with (2.14) this gives

l = a

(

1 + ω2

ω1

)

,

or equivalently,

a = l

(

1 + ω2

ω1

)−1

.

Non-coplanar rotations

Consider a body subject to two non-coplanar angular velocities, referring to pivots
O1 and O2, respectively, as detailed in Fig. 2.6. Show that there is no rotation that
produces the same combined effect as ω1 and ω2.

Again, the velocity of a generic point p of the solid is given by the principle of
superposition. To simplify suppose that the pivot O2 is fixed in space, so by Euler’s
theorem

vp = [ω2,O2p
]+ [ω1,O1p

]

.

But, note that

O2p = O2O1 + O1p,
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Figure 2.6 Rotations in oblique planes.

which gives

vp = [ω1 + ω2,O1p
]+ [ω2,O2O1

]

. (2.15)

This is an expression that cannot be reduced to one of the kind

vp =
[

ω1 + ω2,O ′p
]

for some pivot O ′.
Note, however, that in the case when ω1 and ω2 are coplanar, their rotation lines

intersect at some point O ′, so then we have
[

ω2,O ′O2

]

= 0,
[

ω1,O ′O1

]

= 0. (2.16)

The sum of expressions (2.16) leads to

vp = [ω1 + ω2,O1p
]+
[

ω2,O ′O2 + O2O1

]

+
[

ω1,O ′O1

]

, (2.17)

and since

O ′O2 + O2O1 = O ′O1,

expression (2.17) is reduced to

vp =
[

ω1 + ω2,O ′O1 + O1p
]

.

In view of the relation

O ′O1 + O1p = O ′p,

we finally have

vp =
[

ω1 + ω2,O ′p
]

as expected by the previous lemma. But in the general case, we have only (2.15).
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2.2 Complex movements of the rigid body

2.2.1 General relations

Up to this point, we have studied the velocities of the points of a rigid body due to
the rotation with respect to one of its pivots, which may be moving too. In this section
the velocities and absolute accelerations of the points of the body with respect to an
immobile coordinate system external to the body are obtained.

Let C be a rigid body and O one of its pivots, which has been chosen as the origin of
a coordinate system S that moves being fixed to the body, so that S receives the name
of relative system. In turn, this set is referenced to an immobile coordinate system S ′,
called absolute system, originating in a point O′. Fig. 2.7 illustrates the details.

Figure 2.7 A rigid body and its absolute and relative references.

A point p ∈ C whose position is a temporal function can be represented by two
time-dependent position vectors: rp (t) with respect to system S , called relative posi-
tion, and O ′p (t) with respect to system S ′, called absolute position. Between these
position vectors there is the relationship

O ′p = O ′O + rp,

whose temporary derivative is

˙
O ′p = ˙

O ′O + ṙp,

or equivalently,

vp = vO + ṙp,

where

vp := ˙
O ′p, vO := ˙

O ′O
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represent, respectively, the velocities of p and O with respect to S ′, for which they are
called absolute velocities . Now, by Euler’s theorem there exists a vector ω such that

ṙp = [ω, rp

]

.

So, the absolute speed (velocity) of p is finally given by

vp = vO + [ω, rp

]

. (2.18)

Remark 2.1. Let f,g : [0,∞) → 	3 be temporary functions. It is easily verified, from
the definition of the vector product given in Chapter 1, that

d

dt
[f (t) ,g (t)] = [ḟ (t) ,g (t)

]+ [f (t) , ġ (t)] . (2.19)

Using (2.19), the temporal derivative of expression (2.18) may be obtained:

v̇p = v̇O + [ω̇, rp

]+ [ω, ṙp

]

,

or, in the equivalent form

wp = wO + [ω̇, r] + [ω, ṙ] , (2.20)

where

wp := v̇p, wO := v̇O.

They receive, respectively, the names of absolute accelerations of the points p and O,
since they refer to S ′.

Definition 2.4. The amount

ε := ω̇

is called angular acceleration of the solid body C with respect to pivot O.

By the above definition and Theorem 2.1, the relation (2.20) may be finally rewrit-
ten as

w = wO + [ε, r] + [ω, [ω, r]] . (2.21)

Definition 2.5. In view of the characteristics of the term [ω, [ω, r]], which appears in
expression (2.21), it is called acceleration tending to the axis.

The following example represents an interesting use of Euler’s theorem to calcu-
late ε.

Example 2.1. The solid cone shown in Fig. 2.8 is rolling without sliding at constant
speed. Let us calculate ω and ε. Due to the geometric characteristics of the solid, the
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Figure 2.8 Solid cone rotating.

movement can be decomposed in the two rotations shown in Fig. 2.8, where ω1 is
constant in both magnitude and direction. From (2.12) we have

� = ω1 + ω2,

where, according to Fig. 2.8,

ω1 = ω1k.

Since the set of points of the cone on the y-axis has zero velocity (no sliding), it can
be considered as the axis of rotation, that is, � is on this axis. Therefore (see Fig. 2.9)

� = −ω1j.

Figure 2.9 Diagram of angular speeds.

Then, since ω1 is constant, it follows that

ε := ω̇ = −ω1
d

dt
j.
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Then by Euler’s theorem

d

dt
j = [ω1, j] = ω1i,

which finally implies

ε = −ω2
1i.

2.2.2 Plane non-parallel motion and center of velocities

Let us consider a plane solid body, which moves in a plane (two-dimensional) space
and realizes a non-parallel motion (see Fig. 2.10).

Figure 2.10 Plane non-parallel motion and center of velocities.

Choose two points A and B of a rigid body, which in the case of non-parallel motion
will have corresponding non-collinear velocities vA and vB ([vA,vB ] �= 0). Draw the
lines passing through the selected points and perpendicular to the corresponding speed
vectors. The intersection point of these lines is denoted by the letter O and will be
referred to as the instantaneous center of velocities (or simply the center of velocities)
of a given rigid body.

Lemma 2.2. The velocity vO of the point O is equal to zero, that is,

vO = 0. (2.22)

Proof. Select the pole in the considered moment in the point O. In view of (2.18) we
have

vP = vO + [ω, rP ] .

Applying it for both points P = A,B, we get

vA = vO + [ω, rOA] , vB = vO + [ω, rBA] . (2.23)
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Since ω is orthogonal to both vectors rOA and rOB , which in turn are orthogonal to
vA and vB , it follows that

0 = (vA, rOA) = (vO, rOA) + (rOA, [ω, rOA])
︸ ︷︷ ︸

0

= (vO, rOA) ,

0 = (vB, rOB) = (vO, rOB) + (rOB, [ω, rOB ])
︸ ︷︷ ︸

0

= (vO, rOB) ,

which leads to

0 = (vO, rOA − rOB) . (2.24)

Since the points A and B are chosen arbitrarily, equality (2.24) is possible if and only
if vO = 0.

This permits to conclude that the vector ω passes (in the considered moment)
through the point O and is perpendicular to the plane. Hence this movement can be
considered as a rotation around the point O with the instantaneous rotation rate equal
to ω. Therefore from (2.23) we have

vA = ω rOA, vB = ω rOB (2.25)

and

ω = vA

rOA

= vB

rOB

= vP

rOP

, (2.26)

where P is any point of this solid.

Summary 2.1. a) If O(t) is the center of velocities, by Euler’s theorem there exists
ω (t) such that

vP (t) = [ω (t) ,OP (t)
]

,

where P represents a generic point of the solid.
b) If the body of the previous definition has purely translational movement, then the

velocity center is located at infinity.
c) If we know the direction of the velocities of two solid-flat body points, then the

center of the velocities C will lie at the intersection of the directions orthogonal
to these velocities.

The relations (2.25) and (2.26) turn out to be very useful for the solution of a wide
class of problems concerning plane non-parallel motion of rigid bodies.

Example 2.2. The disk of radius ρ and the shear of length l are pivotally connected
at point A and, in turn, the end point B of the rod may move along the horizontal line
DD′ (see Fig. 2.11). Let us try to represent the speed vB of point B as a function of the
angle ϕ, provided that the disk currently rotates with angular velocity ω0. Constructing
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Figure 2.11 The disk and the shear which are pivotally connected.

the center of velocities, from (2.25) we derive

vA = ω rOA = ω0ρ, vB = ω rOB,

which gives

vB = ω rOB = ω0ρ
rOB

rOA

.

By the “sinus theorem” we have

rOA

sin (∠ABO)
= rOB

sin (∠BAO)
= l

sin (∠AOB)
,

ρ

sinϕ
= l

sin (∠ADB)
= DB

sin (∠DAB)
.

⎫

⎪⎪⎬

⎪⎪⎭

(2.27)

Since

∠ABO = π

2
− ϕ, ∠BAO = π −∠DAB, sin (∠BAO) = sin (∠DAB) ,

it follows that

rOB

rOA

= sin (∠BAO)

sin (∠ABO)
= sin (∠BAO)

sin
(π

2
− ϕ
) =

sin (∠BAO)

cosϕ
= sin (∠DAB)

cosϕ
= sinϕ

cosϕ

DB

ρ
= DB

ρ
tanϕ.

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(2.28)

But by the cosine theorem

ρ2 = (DB)2 + l2 − 2ρl cos (ϕ) ,

implying

(DB)2 = ρ2 − l2 + 2ρl cos (ϕ) . (2.29)
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Substituting (2.29) into (2.28), finally, gives

rOB

rOA

=
√

ρ2 − l2 + 2ρl cos (ϕ)

ρ
tanϕ =

√

1 −
(

l

ρ

)2

+ 2
l

ρ
cos (ϕ) tanϕ.

2.3 Complex movement of a point

The description of the movement of a point with respect to a fixed system, but using a
moving auxiliary system, has very interesting results. These aspects are discussed in
this section.

Consider a point p, referred to using a coordinate system S with the origin O,
which is going to be called a relative system. The system S is a moving system when
it is referred to as a fixed coordinate system S ′ with the origin O ′. We will call this
system S ′ absolute. This situation is depicted in Fig. 2.12.

Figure 2.12 A point p in the absolute and relative systems.

Let

r = [x y z
]T

be the position vector of the point p in the system S , called the relative position vector.
It can be represented as

r = xi + yj + zk, (2.30)

where i, j, k are orthogonal unitary vectors. The absolute position of the point p can
be represented as

rabs = O ′O + r,

or by (2.30) as

rabs = O ′O + xi + yj + zk.
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2.3.1 Absolute velocity

So, the absolute velocity vabs of the point p is

vabs := ṙabs = vO + ẋi + ẏj + żk + x
d

dt
i + y

d

dt
j + z

d

dt
k, (2.31)

where

vO := ˙
O ′O

is the velocity of the origin O in the system S ′. Defining the relative velocity of the
point p as

vrel := ẋi + ẏj + żk (2.32)

and using the relations (2.10),

d

dt
i = [ω, i] ,

d

dt
j = [ω, j] ,

d

dt
k = [ω,k] , (2.33)

where ω is a rotation of the system S around the pivot O, we are able to represent the
absolute velocity of the point p (2.31) in the form

vabs = vO + vrel + [ω, r] . (2.34)

Moreover, defining the translation velocity vtr of the point p as

vtr := vO + [ω, r] , (2.35)

expression (2.34) results in

vabs = vtr + vrel . (2.36)

2.3.2 Absolute acceleration

Through a process similar to the previous one, the temporary derivation (2.34) allows
obtaining the expression for the absolute acceleration of the point p with respect to
the system S ′ in the following form:

wabs := v̇abs = wO + ẍi + ÿj + z̈k + ẋ
d

dt
i + ẏ

d

dt
j + ż

d

dt
k + [ω̇, r] + [ω, ṙ] ,

(2.37)

where

wO := v̇O = ¨
O ′O
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and the definition (2.32) is used. Note that by (2.33) and the relative velocity defini-
tion (2.32) we have

ẋ
d

dt
i + ẏ

d

dt
j + ż

d

dt
k = [ω,vrel] . (2.38)

Moreover, in view of (2.11) and using the relation

ṙ = vrel + [ω, r] ,

the last term in the right-hand side of (2.37) can be rewritten as

[ω, ṙ] = [ω,vrel] + [ω, [ω, r]] . (2.39)

Defining the relative acceleration of the point p as

wrel = ẍi + ÿj + z̈k (2.40)

and substituting the relations (2.38), (2.39), and (2.40) in (2.37) implies

wabs = wO + wrel + [ε, r] + 2 [ω,vrel] + [ω, [ω, r]] , (2.41)

where we have used the definition of the angular acceleration ε := ω̇, previously
introduced.

By the same idea, which the translation speed was defined with in (2.34), the trans-
lation acceleration of the point p may be defined as

wtr := wO + [ε, r] + [ω, [ω, r]] . (2.42)

So, expression (2.41) can be represented in the form

wabs = wtr + wrel + wcor , (2.43)

where

wcor := 2 [ω,vrel] (2.44)

is referred to as the Coriolis acceleration of the point p.

2.4 Examples

Although the following example can be easily solved without resorting to the results
obtained in the previous section, it is preferred to use them because it is very suitable
to illustrate the main concepts introduced before.
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Example 2.3. It could be thought that the translational and relative accelerations de-
fined in the previous section are those derived from the respective velocities. The
following exercise shows that this is not the case. Let us show that

wtr �= v̇tr , wrel �= v̇rel .

Recall that

vtr = vO + [ω, r] ,

and therefore

v̇tr = wO + [ω̇, r] + [ω, ṙ] .

But in view of (2.39) we have

ṙ = vrel + [ω, r] ,

which implies

v̇tr = wO + [ε, r] + [ω, [ω, r]] + [ω,vrel] ,

or equivalently, using the definitions (2.42) and (2.44),

v̇tr = wtr + 1

2
wcor .

Also we have

vrel = ẋi + ẏj + żk,

so

v̇rel = ẍi + ÿj + z̈k + ẋ
d

dt
i + ẏ

d

dt
j + ż

d

dt
k,

and in view of (2.40) it follows that

v̇rel = ẍi + ÿj + z̈k + [ω,vrel] .

So, finally, combining (2.40) with (2.44) we derive

v̇rel = wrel + 1

2
wcor . (2.45)

Example 2.4. A particle slides on the rod as in Fig. 2.13.The rod oscillates with
respect to the vertical forming an angle that evolves according to the law

ϕ (t) = ϕ0 sin (ω0t) ,
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Figure 2.13 Particle sliding on an oscillating bar.

while the particle moves on the rod in such a way that the distance traveled on it
follows the rule

OP (t) = 1

2
at2.

Let us try to determine the velocity vabs and the acceleration wabs of the particle with
respect to the given fixed coordinate system.

Denote by S ′ the fixed coordinate system with origin O ′ as it is illustrated in
Fig. 2.13. Let S be the coordinate system with origin O common with O ′ that os-
cillates with the rod and whose axis of abscissas coincides with this one. Denote by
i, j, k the unit vectors of S and by i′, j′, k′ those of S ′. In the system S the relative
position vector of the particle has the expression

r = 1

2
at2i.

Now, according to (2.36), the absolute velocity of the particle is given by

vabs = vtr + vrel,

where, in view of the conditions of the problem, expression (2.35) results in

vtr = [ω, r] ,

with

ω (t) = ωk, ω = ϕ̇ = ϕ0ω0 cos (ω0t) .

So, we have

vtr = 1

2
at2ωj.

On the other hand, for the present case expression (2.32) has the particular form

vrel = at i, (2.46)
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so

vabs = at i + 1

2
at2ωj,

or, in view of the relations

i = cosϕi′ + sinϕj′,
j = − sinϕi′ + cosϕj′,

in the fixed system i′, j′, k′ we have

vabs = at
(

cosϕi′ + sinϕj′
)+ 1

2
at2ω

(− sinϕi′ + cosϕj′
)

= at

(

cosϕ − 1

2
tω sinϕ

)

i′ + at

(

sinϕ + 1

2
tω cosϕ

)

j′.

The absolute acceleration is determined by (2.43), i.e.,

wabs = wtr + wrel + wcor ,

where in the considered case

wtr = [ε, r] + [ω, [ω, r]] ,

with

ε = εk, ε = ϕ̈ = −ϕ0ω
2
0 sin (ω0t) .

So,

[ε, r] = 1

2
at2εj,

[ω, [ω, r]] = −1

2
at2ω2i,

implying

wtr = 1

2
at2
(

−ω2i + εj
)

.

Regarding relative acceleration, it is given by (2.40), which in the current case has the
expression

wrel = ai,

while the Coriolis acceleration is determined by

wcor = 2 [ω,vrel] .
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These representations together with (2.46) result in

wcor = 2atωj.

Finally, the absolute acceleration may be expressed as

wabs =
(

−1

2
at2ω2 + a

)

i +
(

2atω + 1

2
at2ε

)

j,

or equivalently,

wabs = a

[(

−1

2
t2ω2 + 1

)

cosϕ −
(

2tω + 1

2
t2ε

)]

i′+

a

[(

−1

2
t2ω2 + 1

)

sinϕ +
(

2tω + 1

2
t2ε

)

cosϕ

]

j′.

The example that appears next illustrates the application of Euler’s theorem, Theo-
rem 2.1.

Example 2.5. Fig. 2.14 shows a disk running at constant speed v and without sliding.
Let us calculate the speed and acceleration of the generic point p on the circumference
of the disk and, in particular, of the indicated points A, B, C, and D.

Figure 2.14 Disk rolling with constant speed v.

The most suitable point to serve as a pivot of the disk is its center; that is why
it is chosen as the origin of the system with respect to which the body is immobile
and whose configuration is chosen as shown in Fig. 2.14. This system is designated
as S = (Oxyz) and its unit vector system as i, j, k. The absolute velocity of p with
respect to the absolute system S ′ = (O ′x′y′z′), with unit vectors i′, j′, k′, is given
by (2.18), that is,

vp = v0 + [ω, rp

]

, (2.47)

where

v0 = vi, ω = −ωk, rp = ρerp , (2.48)

with erp as the unitary vector in the direction of rp, which is the position vector of the
point p with respect to the system S . To calculate the angular velocity ω, note that the
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absolute velocity of point A is zero as there is no sliding movement, that is,

vA = 0,

while its position vector rA with respect to S is

rA = −ρj. (2.49)

Substitution of these relations into (2.47) leads to

vi + ωρ [k, j] = (v − ωρ) i = 0,

from which it follows that

ω = v

ρ
. (2.50)

In view of (2.48) and (2.50), the relation (2.47) is reduced to

vp = v
(

i − [k, erp

])

. (2.51)

Expression (2.51) now allows to calculate the velocities of points B, C, and D, whose
unitary position vectors with respect to S are

erB
= −i, erC

= j, erD
= i. (2.52)

So, we have

vB = v (i − [k,−i]) = v (i + j) ,

vC = v (i − [k, j]) = 2vi,

vD = v (i − [k, i]) = v (i − j) .

Given that the choice of S configuration was made in such a way that

i = i′, j = j′, k = k′,

in the fixed (absolute) system S ′ we finally get

vB = v
(

i′ + j′
)

, vC = 2vi′, vD = v
(

i′ − j′
)

.

By (2.21), the acceleration of the point p is expressed as

wp = wO + [ε, rp

]+ [ω,
[

ω, rp

]]

. (2.53)

But, taking into account that

wO = 0, ε = 0,
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in view of (2.48) and (2.50), formula (2.53) is reduced to

wp = v2

ρ

[

k,
[

k, erp

]]

.

By the formula for the triple vector product (see Chapter 1), it follows that
[

k,
[

k, erp

]]= (k, erp

)

k − (k,k) erp = −erp , (2.54)

which finally leads to

wp = −v2

ρ
erp .

Therefore, considering (2.49) and (2.52) for the points A, B, C, and D, we get

wA = v2

ρ
j, wB = v2

ρ
i, wB = −v2

ρ
j, wD = −v2

ρ
i.

With respect to the system S ′ we have

wA = v2

ρ
j′, wB = v2

ρ
i′, wB = −v2

ρ
j′, wD = −v2

ρ
i′.

Fig. 2.15 graphically shows this result.

Figure 2.15 Accelerations in the points of the disk.

Example 2.6. Consider the same disk as in the previous example, but now rolling
with constant velocity of magnitude and without sliding on a circular surface as seen
in Fig. 2.16. Determine the speed and acceleration of the same generic point p on the
circumference of the disk and specify for points A, B, C, and D.

1) Again, the center of the disk is chosen as the origin of the coordinate system
S = (Oxyz) fixed to the disk, while the absolute reference system S ′ = (O ′x′y′z′)

is located in the center of the disk, the circumference on which the disk rolls. For
purposes of the problem posed, it is convenient to choose for S the configuration
shown in Fig. 2.16. The absolute velocity vp of the point p is given by the general
expression (2.18), namely,

vp = v0 + [ω, rp

]

, (2.55)
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Figure 2.16 Disk rolling with constant magnitude speed on a circular surface.

where

v0 = vi,

ω = −ωk,

rp = ρerp ,

⎫

⎪⎬

⎪⎭

(2.56)

with erp as a unit vector in the direction of rp, which describes the position of p with
respect to the system S , whose unit vectors are denoted as i, j, k. The magnitude of
the angular velocity ω is determined from the fact that the absolute velocity of point
A and its position vector with respect to S are

vA = 0,

rA = −ρj,

}

(2.57)

whereby expression (2.55) gives for this point

vi + ωρ [k, j] = (v − ωρ) i = 0,

implying

ω = v

ρ
. (2.58)

With (2.56) and (2.58), the relation (2.55) is reduced to

vp = v
(

i − [k, erp

])

. (2.59)

For the points B, C, and D we have

erB
= −i, erC

= j, erD
= i,
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and in view of (2.59), we get

vB = v (i − [k,−i]) = v (i + j) ,

vC = v (i − [k, j]) = 2vi,

vD = v (i − [k, i]) = v (i − j) .

⎫

⎪⎬

⎪⎭

(2.60)

Now, if we denote by i′, j′, k′ the unit vectors of the fixed system S ′, the following
relations hold:

i = cosϕi′ + sinϕj′,
j = − sinϕi′ + cosϕj′,
k = k′.

⎫

⎪⎬

⎪⎭

So, in the fixed system, the relations (2.60) are presented as

vB = v
(

cosϕi′ + sinϕj′ − sinϕi′ + cosϕj′
)

= v (cosϕ − sinϕ) i′ + v (sinϕ + cosϕ) j′,
vC = 2v

(

cosϕi′ + sinϕj′
)

,

vD = v
(

cosϕi′ + sinϕj′ + sinϕi′ − cosϕj′
)

= v (cosϕ + sinϕ) i′ + v (sinϕ − cosϕ) j′.

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.61)

2) Recalling (2.21), the acceleration of point p is given by

wp = wO + [ε, rp

]+ [ω,
[

ω, rp

]]

. (2.62)

Since the angular velocity ω is constant and the trajectory of O is circular with radius
of curvature R − ρ, we have

ε = 0,

wO = v2

R − ρ
j.

⎫

⎪⎬

⎪⎭

(2.63)

The relationships (2.63) together with (2.58) allow to represent (2.62) as

wp = v2

R − ρ
j + v2

ρ

[

k,
[

k, erp

]]

,

or, in view of (2.54),

wp = v2

R − ρ
j − v2

ρ
erp . (2.64)
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Finally, expression (2.64) together with (2.57) gives for the accelerations of the or-
dered points A, B, C, and D

wA = v2
(

1

R − ρ
+ 1

ρ

)

j,

wB = v2
(

1

ρ
i + 1

R − ρ
j
)

,

wC = v2
(

1

R − ρ
− 1

ρ

)

j,

wD = v2
(

− 1

ρ
i + 1

R − ρ
j
)

,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

or, with respect to the absolute system S ′,

wA = v2
(

1

R − ρ
+ 1

ρ

)
(− sinϕi′ + cosϕj′

)

,

wB = v2

ρ

(

cosϕi′ + sinϕj′
)+ v2

R − ρ

(− sinϕi′ + cosϕj′
)=

v2
(

1

ρ
cosϕ − 1

R − ρ
sinϕ

)

i′ + v2
(

1

ρ
sinϕ + 1

R − ρ
cosϕ

)

j′,

wC = v2
(

1

R − ρ
− 1

ρ

)
(− sinϕi′ + cosϕj′

)

,

wD = −v2

ρ

(

cosϕi′ + sinϕj′
)+ v2

R − ρ

(− sinϕi′ + cosϕj′
)=

v2
(

− 1

ρ
cosϕ − 1

R − ρ
sinϕ

)

i′ + v2
(

− 1

ρ
sinϕ + 1

R − ρ
cosϕ

)

j′.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.65)

Example 2.7. In the gear train of Fig. 2.17 the first gear rotates with an angular
velocity ω0 around its axis, while the train as a whole does so with an angular velocity
� around an axis that coincides with that of the first gear. Determine the angular
velocity of each gear ωi (i = 1,2, · · ·, n). To make the formula

vp = vO + [ω, rp

]

Figure 2.17 Rotating gear train.
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to be appropriate to solve this problem, let us choose the coordinate system S ′ =
(

O ′x′y′z′), shown in Fig. 2.17, as the absolute system. In this system we have

� = −�k′.

For the determination of ω1 note that the contact point A01 between gears 0 and 1 has
the same speed on the two gears. To calculate the speed of A01 on gear 0, note also
that the system S0 = (O0x0y0z0) is fixed to this gear with unit vectors denoted i0, j0,
k0, coinciding with the unit vectors i, j, k of S ′, and with origin in the center of said
gear. For these reasons, we have

ω0 = ω0k0,

while the position vector of A01 with respect to S0 is

r1 = −ρ1i1,

so that

vA01 = vO0 + [ω0, r0] = ω0ρ0j0, (2.66)

with vO0 = 0. On the other hand, to determine the speed of the same point A01, but
now on gear 1, note that the system S1 = (O1x1y1z1) is fixed to the center of this gear
in a similar way as it was done with gear 0, that is, with the unit vectors i1, j1, and k1,
coinciding with the unit vectors i, j, k of S ′. In this situation

ω1 = −ω1k1,

while the position vector of A01 with respect to S1 results in

r1 = −ρ1i1.

Thus

vA01 = vO1 + [ω1, r1] = [−�(ρ0 + ρ1) + ω1ρ1] j1. (2.67)

From (2.66) and (2.67) we may conclude that

ω1 = ω0
ρ0

ρ1
+ �

ρ0 + ρ1

ρ1
.

The knowledge of ω1 allows to determine ω2 following a similar procedure, and so
on. To obtain the general formula, consider the gears (i − 1), and i and their contact
point Ai−1,i . Fixing gear (i − 1), the system Si−1 = (Oi−1xi−1yi−1zi−1) with the unit
vectors ii−1, ji−1, ki−1 coincides with the system S ′ of the unit vectors i, j, k, where

ωi−1 = (−1)i−1 ωi−1ki−1,
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while the position vector of the point Ai−1,i on the gear (i − 1) is expressed as ri−1 =
ρi−1ii−1. Therefore

vAi−1,i
= vOi−1 + [ωi−1, ri−1] =

⎡

⎣−�

⎛

⎝ρ0 + 2
i−2
∑

j=1

ρj + ρi−1

⎞

⎠+ (−1)i−1 ωi−1ρi−1

⎤

⎦ ji−1.

⎫

⎪⎪⎬

⎪⎪⎭

(2.68)

Now, fixing the system Si = (Oixiyizi), again with its matching unit vectors ii , ji , ki

with the unit vectors i, j, k of the system S ′, for gear i we have

ωi = (−1)i ωiki ,

ri = −ρi ii ,

and hence,

vAi−1,i
= vOi

+ [ωi , ri] =
⎡

⎣−�

⎛

⎝ρ0 + 2
i−1
∑

j=1

ρj + ρi

⎞

⎠+ (−1)i+1 ωiρi

⎤

⎦ ji .

⎫

⎪⎪⎬

⎪⎪⎭

(2.69)

From the equalization of the right sides of (2.68) and (2.69) we get

ωi = ωi−1
ρi−1

ρi

+ (−1)i+1 �
ρi−1 + ρi

ρi

. (2.70)

Example 2.8. Consider the two-gear train shown in Fig. 2.18. Assuming that at a
given time t the angular velocities and accelerations ω0, ε0 of gear 0 and �, ε of the
train are known, determine the corresponding ω1, ε1 of gear 1.

Figure 2.18 The two-gear train with acceleration.

The gear in Fig. 2.18 is a particular case of the one considered in the previ-
ous example. So, if the absolute coordinate systems S ′ = (

O ′x′y′z′) as well as
S0 = (O0x0y0z0) and S1 = (O1x1y1z1) are related to gears 0 and 1 as in the previous
example, a procedure similar to that followed allows to conclude that

ω1 = ω0
ρ0

ρ1
+ �

ρ0 + ρ1

ρ1
,
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which after differentiation leads to

ε1 = ε0
ρ0

ρ1
+ ε

ρ0 + ρ1

ρ1
.

Example 2.9. The cylinder (see Fig. 2.19) is subjected to two rotations, one of them
around its main axis. Let us calculate the angular acceleration ε that the body experi-
ences. Since O is the common pivot of ω1 and ω2, the angular velocity

� := ω1 + ω2

Figure 2.19 Cylinder subject to two rotations with common pivot.

produces the same effects on the cylinder as the separate application of said rotations.
So, the angular acceleration ε is given by (2.11)

ε = �̇ = ω̇1eω1 + ω̇2eω2 + ω1ėω1 + ω2ėω2 .

Note now that the configuration shown in Fig. 2.19 rotates with angular velocity given
by ω2. So, by Euler’s theorem, we have

ω1ėω1 = ω1
[

ω2, eω1

]= [ω2,ω1] , ėω2 = [ω2, eω2

]= 0,

and hence,

ε = ω̇1eω1 + ω̇2eω2 + [ω2,ω1] .

2.5 Kinematics of a rigid body rotation

Definition 2.6. If a rigid body moves in such a way that one of its points remains fixed
with respect to some coordinate system, it is said that the body realizes a rotation
movement with respect to the immobile point.

2.5.1 Finite rotations

Suppose that the rigid body shown in Fig. 2.20 is subject to a rotation movement with
respect to the center of coordinates. Suppose that a coordinate system is attached to
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Figure 2.20 A rotation movement with respect to the center of coordinates.

the body, that is, the system is subject to the same rotation movement as the body.
Consider that the coordinate systems shown are the positions of the coordinate system
fixed to the body at two different times: for example, at time t1 the position of the body
corresponds to that of the coordinate system x, y, and z, while at instant t2 the position
is described by the system coordinate ξηζ . A movement like the one described in
Fig. 2.20 receives the name of a finite rotation of the body and it is denoted, for the
situation described in the aforementioned figure, by

(xyz) → (ξηζ ) .

A finite rotation can be obtained as the sequential application of rotations around the
coordinate axes of the system, corresponding to the initial instant (in this case xyz),
called elementary rotations. The sequence, chosen for the elementary rotations, is
referred to as the description of the rotation.

Euler’s description

This description corresponds to the following sequence:

1. Elemental rotation around the z-axis at an angle ψ , that is,

(xyz) → (

x′y′z′) , z = z′ : ψ-action, (2.71)

where x′y′z′ is the configuration presented by the axis coordinate of the system at
the end of the turn. The rotated angle ψ is called the angle of precision.

2. Elementary rotation around the x′-axis at an angle θ , i.e.,
(

x′y′z′)→ (

x′′y′′z′′) , x′ = x′′ : θ − x-action, (2.72)

where x′′y′′z′′ is the configuration presented by the coordinate system at the end
of the movement. The rotation angle θ is called the angle of nutation.

3. Elementary rotation around the y′′-axis at an angle ϕ, i.e.,
(

x′′y′′z′′)→ (

x′′′y′′′z′′′) , y′′ = y′′′ : ϕ-action, (2.73)

where x′′′y′′′z′′′ is the coordinate system configuration at the end of the rotation.
The angle of rotation is called the proper rotation angle.

Definition 2.7. The angles (ψ, θ,ϕ), corresponding to Euler’s description, are called
Euler angles.
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Natural description

The sequence chosen to carry out the movement is as follows:

1. Elemental rotation around the x-axis at an angle α, that is,

(xyz) → (

x′y′z′) , x = x′ : α-action,

where x′y′z′ is the configuration presented by the coordinate system at the end of
the rotation given by the angle α.

2. Elementary rotation around the y′-axis at an angle β, i.e.,
(

x′y′z′)→ (

x′′y′′z′′) , y′ = y′′ : β-action,

where x′′y′′z′′ is the configuration that presents the coordinate system at the end
of the rotation given by the angle β.

3. Elementary rotation around the z′′-axis at an angle γ , i.e.,
(

x′′y′′z′′)→ (

x′′′y′′′z′′′) , z′′ = z′′′ : γ -action,

where x′′′y′′′z′′′ is the configuration of the coordinate system at the end of the
rotation given by the angle γ .

Definition 2.8. The angles (α,β, γ ) of the natural description are called natural an-
gles.

2.5.2 Rotation matrix

Definition 2.9. A matrix A ∈ R3×3 such that

‖Ar‖ = ‖r‖ ∀r ∈R
3 (2.74)

is called rotation matrix, since the longitude of the vector Ar, characterizing the new
position, remains the same as the longitude of the initial vector r.

In what follows, the matrix

A = [aij

]

, i, j = 1,2,3, (2.75)

denotes a generic rotation matrix.

Properties of the rotation matrix

The rotation matrix A has a series of properties, which are enunciated and tested in
the lines that follow.

P1. We have

AT A = I, (2.76)

where I is the identity matrix of order 3.
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Proof. By contradiction, suppose that A is a rotation matrix, but

AT A �= I.

Then for every r ∈R
3 we have

rT AT Ar �= rT r,

or equivalently,

‖Ar‖2 �= ‖r‖2 .

So by (2.74), A is not a rotation matrix.

P2. We have

detA = ±1.

Proof. In view of P1 it follows that

det
(

AT A
)

= 1. (2.77)

But

det
(

AT A
)

= detAT detA = (detA)2 ,

which proves (2.77).

Remark 2.2. Based on P2 matrix A is qualified as:

• pure rotation if

detA = 1,

• rotation plus specular reflection if

detA = −1.

P3. We have

AAT = I. (2.78)

Proof. By P2 there exists
(

AT
)−1

; therefore premultiplying by
(

AT
)−1

and postmul-
tiplying by AT the relation (2.76) becomes

(

AT
)−1

AT AAT =
(

AT
)−1

AT ,

and since
(

AT
)−1

AT = I we obtain (2.78).
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Corollary 2.1. From P2 and P3 it follows that

AT = A−1. (2.79)

Moreover, any matrix A ∈R3×3 satisfying (2.79) is a rotation matrix.

Proof. Postmultiplying (2.79) by A we get

AT A = I.

So, for any r ∈R
3

rT AT Ar = rT r,

or

‖Ar‖ = ‖r‖ ,

and hence, A is a rotation matrix.

P4. Representing a matrix A as

A = [ā1 ā2 ā3
]

, A =
⎡

⎣

a1
a2
a3

⎤

⎦ ,

where āi and ai , i = 1,2,3, denote the i-th column and the i-th row (line) of A,
respectively, we have

(

āi , āj

)= δij ,
(

ai, aj

)

= δij ,

which means that the column vectors of A are orthonormal between them and the
same happens with their line vectors.

Proof. The orthonormality of the column vectors follows from P2 and that of the row
vectors from P3.

Remark 2.3. By P4 the rotation matrix A is said to be orthonormal. Now, from the
previous corollary it follows that the orthonormality of A is equivalent to the condi-
tion (2.79).

To state the following property of A requires remembering a concept presented
below.

Definition 2.10. Given the matrix

B = [bij

]

, i, j = 1,2, ..., n,
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the product

Bij := (−1)i+j Mij

is called algebraic complement of the element (i, j) of matrix B. Here Mij denotes
the (i, j)-minor of matrix B which is the determinant obtained from detB in which
the i-th row and the j -th column have been deleted.

Remark 2.4. The previously defined concept has immediate application in the calcu-
lation of the inverse matrices, namely, if detB �= 0, it is verified that

B−1 = 1

detB

[

BT
ij

]

, (2.80)

where BT
ij denotes the algebraic complement of the element (i, j) of BT .

P5. If the rotation matrix A defines a pure rotation, then

aij = Aij . (2.81)

Proof. From (2.80) and since we deal with a pure rotation (detA = 1), we have

A−1 =
[

AT
ij

]

. (2.82)

But

AT
ij = Aji.

So by (2.79), the relation (2.82) can be rewritten as

AT = [Aji

]

,

or equivalently,

A = [Aji

]T = [Aij

]

,

which proves (2.81).

Corollary 2.2. Property P5 allows to obtain the following relations between the ele-
ments of the rotation matrix A:

a11 = a22a33 − a23a32,

a12 = − (a21a33 − a31a23) ,

...

⎫

⎪⎪⎬

⎪⎪⎭

(2.83)

As is known, the scalars λk and the vectors rk �= 0 (k = 1,2,3) that are solutions
of the equation

Brk = λrk (2.84)
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are called the eigenvalues and eigenvectors of the square matrix B. The properties that
follow deal with the values and eigenvectors of the rotation matrix A given by (2.81).

P6. The eigenvalues λk (k = 1,2,3) of a rotation matrix A are given by

λ1 = 1,

λ2 = ejφ,

λ3 = e−jφ,

⎫

⎪⎬

⎪⎭

(2.85)

where

e±jφ = cosφ ± j sinφ, j2 = −1,

with

φ := arccos

(
trA − 1

2

)

.

Proof. By (2.84) the eigenvalues λk (k = 1,2,3) are the solutions of the characteristic
equation

det (A − λI) = 0, (2.86)

and it is easily verified from the orthonormality of A and the relationships (2.83) that

det (A − λI) = −λ3 + λ2 trA − λ trA + 1.

So, it follows immediately that

λ1 = 1

and that the remaining solutions are given by

λ2 − λ (trA − 1) + 1 = 0,

implying

λ2,3 = trA − 1

2
±
√
(

trA − 1

2

)2

− 1. (2.87)

On the other hand, since λk (k = 2,3) must satisfy (2.84), that is,

Ark = λkrk, (2.88)

for some vectors rk �= 0. Therefore,

‖Ark‖2 = ‖λkrk‖2 = |λk|2 ‖rk‖2 . (2.89)
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But by P1

‖Ark‖2 = (Ark,Ark) =
(

rk,A
T Ark

)

= (rk, rk) = ‖rk‖2 , (2.90)

which leads to the relation

|λk| = 1, k = 2,3. (2.91)

The condition (2.91) is not met if the discriminant in (2.87) is positive, because in
such case both λk are real and

|λ2| �= |λ3| .

In the case where said discriminant is not positive, (2.87) can be rewritten as

λ2,3 = trA − 1

2
± j

√

1 −
(

trA − 1

2

)2

, j2 = −1, (2.92)

satisfying the property (2.91). It can be represented as

λ2,3 = ejφ, (2.93)

such that by the Euler formula we are able to make the following association:

cosφ = trA − 1

2
, sinφ =

√

1 −
(

trA − 1

2

)2

. (2.94)

Note that the second relationship (2.94) is another way of writing the first one (2.93)
if we take into account that

(sinφ)2 + (cosφ)2 = 1.

Finally, the two expressions (2.93) and (2.94) lead to the desired result.

Remark 2.5. If the discriminant in (2.92) is equal to zero, which occurs if

∣
∣
∣
∣

trA − 1

2

∣
∣
∣
∣
= 1,

we have

λ2 = λ3 = 1 or λ2 = λ3 = −1.

The case λi = 1, i = 1,2,3, appears when A = I , and is not interesting, because no
rotation is properly given.
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P7. The eigenvector corresponding to λ1 = 1 and denoted r1 is given by

r1 = 1

2 sinφ

⎡

⎣

a32 − a23
a31 − a13
a12 − a21

⎤

⎦ . (2.95)

Proof. Representing r1 as

r1 = [x1 y1 z1
]T

and substituting λ1 in (2.84) leads to the following system of equations for the deter-
mination of the components of r1:

(a11 − 1) x1 + a12y1 + a13z1 = 0,

a21x1 + (a22 − 1) y1 + a23z1 = 0,

a31x1 + a32y1 + (a33 − 1) z1 = 0.

⎫

⎪⎬

⎪⎭

(2.96)

Because λ1 = 1 is the eigenvalue of the rotation matrix A, assuming that A �= I , it is
verified that one of the equations of (2.96) is not independent. However, after normal-
izing (2.88) by ‖r1‖, without loss of generality, we can consider the case ‖r1‖ = 1
only, that is,

x2
1 + y2

1 + z2
1 = 1,

which is independent of (2.96). So, we may conclude that there is only one solution,
given by (2.95).

P8. It is easy to check that

r2 =
⎡

⎣

0
1
0

⎤

⎦ , r3 =
⎡

⎣

0
0
1

⎤

⎦ .

Below we need the following definition.

Definition 2.11. Define the parameters of Rodríguez–Hamilton as follows:

•

λ0 := cos
φ

2
,

which defines the angle of rotation;
•

λ1 := x1 sin
φ

2
, λ2 := y1 sin

φ

2
, λ3 := z1 sin

φ

2
,

which define the axes of rotation.
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It is easy to check that the following property for the parameters of Rodríguez–
Hamilton is satisfied:

λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1.

2.5.3 Composition of rotations

Suppose that A and B are two rotation matrices and that r ∈ R3. The notation

r
A→ r′ B→ r′′

indicates that the rotation of r given by A is applied first, and then the rotation given
by B is applied to the obtained vector r′. In other words,

r′ = Ar, r′′ = Br′.

So, by immediate substitution we have

r′′ = Cr,

where

C := BA. (2.97)

The following result characterizes the properties of the matrix C.

Lemma 2.3. The matrix C is a rotation matrix, that is,

CT = C−1. (2.98)

Proof. By the definition (2.97) and taking into account that both matrices A and B

are rotation matrices too, on the one hand,

CT C = (BA)T BA = AT BT BA = AT A = I,

and on the other hand,

CCT = BA(BA)T = BAAT BT = BBT = I,

which leads to (2.98).

Up to this point we have studied the effect of a rotation matrix A applied to a
vector r ∈ R3, defined in the original coordinate system. However, the rotation can
also be studied in another coordinate system, which has interesting results. Suppose
that A is a rotation matrix, acting as

i′ = Ai, j′ = Aj, k′ = Ak. (2.99)
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The vectors i′, j′, k′ are the unitary vectors obtained by the rotation of the original
unitary vectors i, j, k. Now, consider a vector r ∈ R3 with its representation

r = xi + yj + zk. (2.100)

Since there exists A−1 (which coincides with AT ), from (2.99) the following relation-
ships can be obtained:

i = AT i′, j = AT j′, k = AT k′.

Substitution in (2.100) gives the representation of r in the unit vector system i′, j′, k′:

r = AT
(

xi′ + yj′ + zk′) . (2.101)

The previous expression has important details. If we denote by r̃ the representation
of the vector r with respect to the rotated system, then the relation (2.101) can be
represented as

r′ = AT r,

where r is represented with respect to the original system. So A and AT can be seen
as opposed base changes.

In what follows we investigate the change that a rotation matrix A undergoes
when it is represented in the base of the rotated system, given by the same matrix A.
Consider matrices A and B, where A defines a first rotation. If S and S′ denote, re-
spectively, the coordinate system before and after the application of the rotation A,
that is,

S
A→ S′, (2.102)

where the base of S′ is given by (2.99), the lemma presented below allows obtaining
the representation of B in the base S′, denoted BS′ .

Lemma 2.4. Suppose that A and B are matrices, where the first is a rotation. Then

BS′ = AT BA, (2.103)

with S′ given by (2.102).

Proof. Let

y = Bx (2.104)

for x ∈ R3. Since AT is non-singular, it can be seen as a base change: in the new base
equation (2.104) takes the form

AT y = AT BA−T AT x, (2.105)
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where A−T denotes the inverse of AT . Let x′ and y′ be the representations of the
vectors x and y in the new base, that is,

x′ := AT x, y′ := AT y,

whereupon (2.105) may be written as

y′ = AT BA−T x′,

and, since A−T = A, we get

y′ = AT BAx′.

This expression shows that the matrix AT BA is the representation of the matrix B in
the new base, which proves (2.105).

Definition 2.12. The representation of the rotation matrix A with respect to the rotated
system, obtained from itself, that is, the one given by the base (2.99), is called the
proper (own) matrix of A, and it is denoted by A∗.

Lemma 2.5. It is easy to check that

A∗ = A.

Proof. Note that if B = A in (2.103), then AS′ = A∗, which immediately gives

A∗ = AT AA

and the desired result follows if we take into account that AT A = I .

The previous results, applied to the composition of rotations, lead to the following
fact.

Lemma 2.6. Let A and B be rotational matrices, where B is described with respect
to the rotated system obtained via A. Denote by C the matrix, obtained from the com-
position of the rotations in order A, B, that is,

C := BA.

Then the following property holds:

C∗ = A∗B∗.

Proof. Let S be the original system before the application of no rotation; denote by
S′ the system obtained by applying to S the rotation A, and by S′′ the system obtained
from S′ when applying the rotation B, that is,

S
A→ S′ B→ S′′.
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With the notation used previously and by the previous lemma we have the expressions

A∗ := AS′ ,

B∗ := BS′′ = BS′
(2.106)

whose product (in the order that follows) is obtained:

B∗A∗ = BS′AS′ = CS′ . (2.107)

On the other hand, in view of (2.103) and using (2.107),

CS′′ = BT
S′CS′BS′ = BT

S′BS′AS′BS′ .

But in view of the property BT
S′BS′ = I , we get

CS′′ = AS′BS′ . (2.108)

Since

C∗ := CS′′ ,

by (2.106) and (2.108), it follows that

C∗ = A∗B∗.

The newly tested result has its natural application in obtaining the matrix that de-
scribes the rotation, corresponding to the description in the Euler angles, which is the
object of the example in the end of this chapter.

2.6 Rotations and quaternions

As shown below, the so-called quaternions represent a very useful tool for the model-
ing and analysis of rotations.

2.6.1 Quaternions

Definition 2.13. A construction of the type

� := λ0 +
3
∑

j=1

λj ij , λj ∈ R, j = 1,2,3, (2.109)

is called the Hamiltonian quaternion, hereinafter simply called quaternion. The set
of quaternions is denoted by H.
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In mathematics, the quaternions are a number system that extends the complex
numbers. They were first described and applied to mechanics in three-dimensional
space by Irish mathematician William Rowan Hamilton in 1843. A feature of quater-
nions is that multiplication of two quaternions is non-commutative. Hamilton defined
a quaternion as the quotient of two directed lines in a three-dimensional space or
equivalently as the quotient of two vectors.

Definition 2.14. Consider the quaternions

� := λ0 +
3
∑

j=1

λj ij ,

� := δ0 +
3
∑

j=1

δj ij .

(i) It is said that � = � if and only if

λj = δj , j = 0, ...,3.

(ii) The sum � + � is defined as

� + � = λ0 + δ0 +
3
∑

j=0

(

λj + δj

)

ij .

(iii) The product of quaternions � ◦� is defined as the distributive operation on the
sum, where the following relations are satisfied:

i1i2 = i3, i2i3 = i1, i3i1 = i2,

i2i1 = −i3, i3i2 = −i1, i1i3 = −i2,

ij ij = −1, j = 1,2,3.

⎫

⎪⎬

⎪⎭

(2.110)

Remark 2.6. It is clear that the set of quaternions with the defined addition operation
forms an Abelian group structure whose neutral element is 0, defined by

0 := 0 +
3
∑

j=1

0ij .

The algebraic structure formed by the set of quaternions with the operations of sum
and product, defined above, is denoted by H.

Remark 2.7. By the given product definition, the quaternion of (2.109) may be rep-
resented in the form

� := λ0 + λ, (2.111)
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where λ0 and

λ :=
3
∑

j=1

λj ij

are called the scalar and vector parts of �, respectively.

From the product definition property (2.110) and with the representation (2.111)
the following formula for the quaternions product is obtained immediately.

Lemma 2.7. If

� := λ0 + λ, � := δ0 + δ,

then

� ◦ � := λ0δ0 − (λ, δ) + λ0δ + δ0λ + [λ, δ] , (2.112)

where (·, ·) and [·, ·] denote the usual scalar and vector products.

Proof. Using the properties (2.110) it follows that

� ◦ � =
⎛

⎝λ0 +
3
∑

j=1

λj ij

⎞

⎠

⎛

⎝δ0 +
3
∑

j=1

δj ij

⎞

⎠=

λ0δ0 + λ0δ + δ0λ +
3
∑

j=1

λj ij
3
∑

j=1

δj ij =

λ0δ0 + λ0δ + δ0λ +
3
∑

i=1

3
∑

j=1

λiδj ij ii =

λ0δ0 + λ0δ + δ0λ − (λ, δ) +
3
∑

i=1

3
∑

j �=i

λiδj ij ii =

λ0δ0 − (λ, δ) + λ0δ + δ0λ + [λ, δ] .

Definition 2.15. Let

� := λ0 + λ.

Then the quaternion

�∗ := λ0 − λ

is referred to as the quaternion conjugated to �.
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For given

� := λ0 + λ

and

�∗ := δ0 + δ, δ0 = λ0, δ = −λ,

by the properties of the scalar and vector products, it is verified that

� ◦ �∗ = �∗ ◦ � = λ0δ0 − (λ, δ) =
4
∑

j=0

λj δj ∈ R.

Definition 2.16. The scalar amount

‖�‖ := (� ◦ �∗)1/2 = (�∗ ◦ �
)1/2 (2.113)

it is called the quaternion norm of �.

In addition to the properties of the product already given, the operation � ◦ � of
the product satisfies several more, which are easily verified from the previous devel-
opments.

Lemma 2.8 (Additional properties of the quaternion product). Let �, �, 	 be quater-
nions, that is, �,�,	 ∈ H. Then the following properties hold:

1. No commutativity: We have

� ◦ � �= � ◦ �.

2. Associativity: We have

(� ◦ �) ◦ 	 = � ◦ (� ◦ 	) .

3. Unity: We have

� ◦ 1 = 1 ◦ � = �, (2.114)

where 1 ∈H is given by

1 = 1 +
3
∑

j=1

0ij .

4. Conjugate product: We have

(� ◦ �)∗ = �∗ ◦ �∗. (2.115)



Rigid body kinematics 75

5. Given that

‖� ◦ �‖2 := � ◦ � ◦ (� ◦ �)∗ ,

in view of (2.115) and (2.113) it follows that

‖� ◦ �‖2 = � ◦ � ◦ �∗ ◦ �∗ = ‖�‖2 � ◦ �∗ = ‖�‖2 ‖�‖2 ,

which means that

‖� ◦ �‖ = ‖�‖‖�‖ . (2.116)

6. If � �= 0, we may define the multiplicative inverse of � as the quaternion, denoted
by �−1, with the property

�−1 ◦ � = � ◦ �−1 = 1, (2.117)

whereby

�∗ ◦ � ◦ �−1 = �∗,

implying

�−1 = 1

‖�‖2
�∗,

where (2.113) has been used.

Remark 2.8. As can be seen immediately, the set H turns out to be a ring with
division.

The next exercise illustrates the use of the quaternion set H in the solution of
quadratic equations.

Example 2.10. Consider the following quadratic equation with respect to the variable
X defined in the quaternion space H:

X2 + aX + b = 0,

a2

4
− b < 0, a, b ∈ R.

⎫

⎬

⎭
(2.118)

The solutions of (2.118) depend on the algebraic structure to which X belongs.

a) If X is considered as a real number, i.e., X ∈ R, then there are no solutions at all.
b) If X is considered as a complex number, i.e., X ∈ C, then there exist two solu-

tions:

X1,2 = −a

2
± j

√
∣
∣
∣
∣

a2

4
− b

∣
∣
∣
∣
, j2 = −1.
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c) If X is considered as a quaternion, i.e., X ∈ H, then it has the following repre-
sentation:

X = x0 + x, x =
3
∑

k=1

xkik, xk ∈ R, k = 0, ...,3,

and we need to find the exact expressions for xk (k = 0,1,2,3).

In view of (2.112) we have

X2 := XX = x2
0 − 〈x,x〉 + 2x0x,

which after substitution into (2.118) leads to

x2
0 − 〈x,x〉 + b + ax0 + (2x0 + a)x = 0. (2.119)

The relation (2.119) is satisfied if and only if the real and vectorial parts are equal to
zero simultaneously, namely,

x2
0 − 〈x,x〉 + b + ax0 = 0, (2.120)

(2x0 + a)x = 0. (2.121)

Since it has already been seen that if x = 0 there are no solutions (x = x0 ∈ R),
from (2.121) it follows that

x0 = −a

2
.

This value, being substituted in (2.120), leads to

(x,x) = −a2

4
+ b, (2.122)

which must be non-negative and which matches the condition given in (2.118). Ex-
pression (2.122) is a condition only on the magnitude of x:

‖x‖ =
√

b − a2

4
.

So, all x are of the form

x =
√

b − a2

4
e,

where e is any unitary vector (‖e‖ = 1). Then the set of quaternions that are solutions
of (2.118) is given by

X = −a

2
+
√

b − a2

4
e.



Rigid body kinematics 77

This means that there are infinitely many solutions of the quadratic equation (2.118)
in the quaternion space H.

Quaternions as rotation operators

Below we illustrate one of the possible effective applications of quaternions.

Definition 2.17. It is said that a quaternion � = λ0 + λ is normalized if

‖�‖2 = λ2
0 +

3
∑

j=1

λ2
j = 1.

We can observe that λ2
0 ≤ 1 and hence there exist ζ such that λ0 can be represented

as

λ0 := cos
ζ

2
,

and

‖λ‖2 =
3
∑

j=1

λ2
j = 1 − λ2

0 = sin2 ζ

2
,

�̄ = ē · sin
ζ

2
,

so that

λ = ē sin
ζ

2
, ‖ē‖ = 1.

This finally gives the general representation of a normalized quaternion �norm:

�norm = cos
ζ

2
+ ē sin

ζ

2
. (2.123)

Theorem 2.2. Consider a vector r that has a common point O with a vector ē. Then
the transformation

r′ = �norm ◦ r ◦ �∗
norm =

(

cos
ζ

2
+ ē sin

ζ

2

)

◦ r ◦
(

cos
ζ

2
− ē sin

ζ

2

)

=
r cos ζ + [ē, r] sin ζ + ē (ē, r) [1 − cos ζ ]

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(2.124)

is a rotation of the vector r with respect to the axis ē with the angle (see Fig. 2.21)

ζ = 2 arccosλ0.
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Figure 2.21 Quaternion as a rotation operator.

Proof. 1) First we have to show that (2.124) defines a rotation, that is, its norm
is the same both before and after the application of the rotation. Indeed, using the
rule (2.116) we get

∥
∥r′∥∥= ‖�norm‖∥∥�∗

norm

∥
∥‖r‖ = ‖r‖ ,

since ‖�norm‖ and
∥
∥�∗

norm

∥
∥ are normalized quaternions.

2) Using (2.112), let us calculate first

(

cos
ζ

2
+ ē sin

ζ

2

)

◦ r = r cos
ζ

2
− (ē, r) sin

ζ

2
+ [ē, r] sin

ζ

2
.

Then, by the same rule (2.112), it follows that

�norm ◦ r ◦ �∗
norm =

(

cos
ζ

2
+ ē sin

ζ

2

)

◦ r ◦
(

cos
ζ

2
− ē sin

ζ

2

)

=
[

− (ē, r) sin
ζ

2
+
(

r cos
ζ

2
+ [ē, r] sin

ζ

2

)]

◦
[

cos
ζ

2
+
(

−ē sin
ζ

2

)]

= − (ē, r) cos
ζ

2
sin

ζ

2
+ cos

ζ

2

(

r cos
ζ

2
+ [ē, r] sin

ζ

2

)

− (ē, r) sin
ζ

2

[

−ē sin
ζ

2

]

−
(

r cos
ζ

2
+ [ē, r] sin

ζ

2
,

[

−ē sin
ζ

2

])

+
[(

r cos
ζ

2
+ [ē, r] sin

ζ

2

)

,

(

−ē sin
ζ

2

)]

.

So,

r′ = − (ē, r) cos
ζ

2
sin

ζ

2
+ (r, ē) cos

ζ

2
sin

ζ

2

cos
ζ

2

(

r cos
ζ

2
+ [ē, r] sin

ζ

2

)

− (ē, r) sin
ζ

2

[

−ē sin
ζ

2

]
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− [r, ē] cos
ζ

2
sin

ζ

2
− [[ē, r] , ē] sin2 ζ

2

= r cos2 ζ

2
+ [ē, r] cos

ζ

2
sin

ζ

2
+ ē (ē, r) sin2 ζ

2

− [r, ē] cos
ζ

2
sin

ζ

2
+ [ē, [ē, r]]
︸ ︷︷ ︸

ē( ¯e,r)−r

sin2 ζ

2
=

r
(

cos2 ζ

2
− sin2 ζ

2

)

+ 2 [ē, r] cos
ζ

2
sin

ζ

2
+ 2ē (ē, r) sin2 ζ

2

= r cos ζ + [ē, r] sin ζ + ē (ē, r) [1 − cos ζ ] .

Here we have used the following trigonometric relations:

cos2 ζ

2
− sin2 ζ

2
= cos ζ,

cos2 ζ

2
+ sin2 ζ

2
= 1,

2 sin2 ζ

2
= 1 − cos ζ.

So, finally we have (2.124).
Note that the square of the norm of the right-hand side in (2.124) is equal to

‖r‖2 = r2. Indeed, defining the angle θ := (̂̄e, r
)

, we have

‖r cos ζ + [ē, r] sin ζ + ē (ē, r) [1 − cos ζ ]‖2 /r2 =
cos2 ζ + sin2 θ sin2 ζ + (1 − cos ζ )2 cos2 θ + 2 cos2 θ cos ζ [1 − cos ζ ] =
cos2 ζ + sin2 θ sin2 ζ + (1 − cos ζ )2 cos2 θ + 2 cos2 θ cos ζ [1 − cos ζ ] =
cos2 ζ + sin2 θ sin2 ζ +

(

1 − 2 cos ζ + cos2 ζ
)

cos2 θ + 2 cos2 θ cos ζ

−2 cos2 θ cos2 ζ = cos2 ζ + sin2 θ sin2 ζ + cos2 θ − cos2 θ cos2 ζ =
cos2 ζ + sin2 θ sin2 ζ + cos2 θ sin2 ζ =
cos2 ζ +

[

sin2 θ + cos2 θ
]

sin2 ζ = 1.

3) To prove that this is a rotation around the direction ē we need to prove that the
projections of r′ and r to the vector ē are equal. In view of (2.124) it follows that

(r′, ē) = ( ¯e, r) cos ζ + ‖ē‖2 (ē, r) [1 − cos ζ ]

= ( ¯e, r) cos ζ + (ē, r) [1 − cos ζ ] = ( ¯e, r) .

4) Finally we need to prove that the angle ζ ′ of rotation is ζ . For ζ ∈ [0,π/2] (see
Fig. 2.21) it follows that

cos ζ ′ =
(

r − h ¯e, r ′ − hē
)

ρ2 = ρ−2
[(

r, r′)− h
( ¯e, r + r

′)+ h2
]

=
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ρ−2
[(

r, r′)− h
( ¯e,2r cos ζ + [ē, r] sin ζ + ē (ē, r) [1 − cos ζ ]

)+ h2
]

=
ρ−2

[

r2 cos ζ − h2r cos ζ cos θ − hr cos θ [1 − cos ζ ] + h2
]

=
ρ−2

[

r2 cos ζ − hr cos ζ cos θ − hr cos θ + h2
]

=
ρ−2

[

r2 cos ζ − cos ζ cos2 θ − cos2 θ + cos2 θ
]

= [ r

ρ
sin θ

︸ ︷︷ ︸

1

]2 cos ζ = cos ζ,

which means that

ζ ′ = ζ + πk, k = ...,−1,0,1, ....

For physical reasons only the unique value k = 0 makes sense, such that

ζ ′ = ζ.

Summary 2.2. From this fact one can see that the parameters of the normalized
quaternions �norm coincide with the Rodríguez–Hamilton parameters which define
a rotation, that is,

λ0 = cos
ζ

2
, λ1 = ex sin

ζ

2
, λ2 = ey sin

ζ

2
, λ3 = ez sin

ζ

2
,

e2
x + e2

y + e2
z = 1.

2.6.2 Composition or summation of rotations as a quaternion

Suppose that �norm and Mnorm are two normalized quaternions and that r ∈ R3. The
notation

r
�norm→ r′ Mnorm→ r′′

indicates that the quaternion given by �norm is first applied on r and then the quater-
nion given by Mnorm is applied to the obtained vector r′′. In other words,

r′ = �norm ◦ r ◦ �∗
norm,

r′′ = Mnorm ◦ r′ ◦ M∗
norm = Mnorm ◦ (�norm ◦ r ◦ �∗

norm) ◦ M∗
norm

= (Mnorm ◦ �norm) ◦ r ◦ (�∗
norm ◦ M∗

norm).

In view of the relation

�∗ ◦ M∗ = (M ◦ �)∗
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and defining

Nnorm := Mnorm ◦ �norm,

finally, we obtain

r′′ = Nnorm ◦ r ◦ N∗
norm.

Since �norm and Mnorm are normalized quaternions, it follows that

‖N‖ = ‖M‖ · ‖�‖ = 1,

which means that N is also normalized, namely, N = Nnorm.
If there are K rotations, that is, �norm,i (i = 1, ..,K), then the final or summary

effect can be represented as only one rotation, given by

Nnorm = �norm,K ◦ �norm,K−1 ◦ �norm,K−2 ◦ ... ◦ �norm,1.

It should be mentioned that all quaternions are given in the same initial coordinate
system.

Quaternion as a transformation of a coordinate system

Sometimes it occurs that two quaternions are given in different basis systems. This
provokes a problem in the analysis of the resulting two-step rotation. We will show
now how to avoid this trouble.

Now let us consider each quaternion as a transformation of the coordinate system

i′j = �norm ◦ ij ◦ �∗
norm (j = 1,2,3),

ij = �∗
norm ◦ i′j ◦ �norm.

}

(2.125)

Hence, we can represent the vector r as

r = λ1i1 + λ2i2 + λ3i3 = �∗
norm ◦ (λ1i′1 + λ2i′2 + λ3i′3) ◦ �norm.

In this reduced form we can represent the expression above as

r(i′1,i′2,i′3) = �norm ◦ r(i1,i2,i3) ◦ �∗
norm,

where r(i′1,i′2,i′3) is the vector r := r(i1,i2,i3) given in a new coordinate system (i′1, i′2, i′3).
Let now the quaternion �1,norm be given in the basis (i1, i2, i3) and let the quaternion
�2,norm,(i′1,i′2,i′3) be defined in the basis (i′1, i′2, i′3). To present the second quaternion in
the original basis (i1, i2, i3) let us use formula (2.125):
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�2,norm,(i′1,i′2,i′3) = λ2,0 +
3
∑

j=1

λ2,j i′j =

λ2,0 +
3
∑

j=1

λ2,j�1,norm,(i1,i2,i3) ◦ ij ◦ �∗
1,norm,(i1,i2,i3)

=

�1,norm,(i1,i2,i3) ◦
⎛

⎝λ2,0 +
3
∑

j=1

λ2,j ij

⎞

⎠ ◦ �∗
1,norm,(i1,i2,i3)

=

�1,norm,(i1,i2,i3) ◦ �2,norm,(i1,i2,i3) ◦ �∗
1,norm,(i1,i2,i3)

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.126)

Remark 2.9. It is important to note that the coordinates λ2,j (j = 0,1, ..,3) of
the quaternions �2,norm,(i′1,i′2,i′3) in the basis (i′1, i′2, i′3) are the same as in the basis
i1, i2, i3).

Lemma 2.9. If

N = �2,norm,(i′1,i′2,i′3) ◦ �1,norm,(i1,i2,i3), (2.127)

that is, N is a composition of two quaternions given in different basic coordinates,
then the same quaternion N(i1,i2,i3) given in the initial basis can be expressed as

N(i1,i2,i3) = �1,norm,(i1,i2,i3 ◦ �2,norm,(i1,i2,i3).

Proof. Substituting the relation (2.126) into (2.127) gives

N = �2,norm,(i′1,i′2,i′3) ◦ �1,norm,(i1,i2,i3) =
(

�1,norm,(i1,i2,i3 ◦ �2,norm,(i1,i2,i3) ◦ �∗
1,norm,(i1,i2,i3

)

◦ �1,norm,(i1,i2,i3) =
�1,norm,(i1,i2,i3 ◦ �2,norm,(i1,i2,i3) := N(i1,i2,i3).

Definition 2.18. A quaternion �2,norm,(i1,i2,i3) is called proper with respect to the
quaternion �2,norm,(i′1,i′2,i′3).

Summary 2.3. We may conclude that if N is a composition of several quaternions
given in different sequential basic coordinates

N = �
K,(i

(K)
1 ,i

(K)
2 ,i

(K)
3 )

◦ �
K−1,(i

(K−1)
1 ,i

(K−1)
2 ,i

(K−1)
3 )

◦ ... ◦ �1(i1,i2,i3),

then

N(i1,i2,i3) = �1(i1,i2,i3) ◦ �K−2,(i1,i2,i3) ◦ ... ◦ �K,(i1,i2,i3). (2.128)
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Example 2.11. Let two rotations apply to the vector r: the first with respect to i2 on
the angle ϕ, and the second with respect to i3 on the angle θ . Let us obtain the final
position vector r′′, using the quaternion composition approach. We have

r̄ = ai1 − ai2, a = r

√
2

2
.

Our rotations are realized by

�1 = cos
ϕ

2
+ i2 sin

ϕ

2
,

�2 = cos
θ

2
+ i′3 sin

θ

2
.

Then, the composition of rotations is given by

N := �2 ◦ �1 = (cos
θ

2
+ i′3 sin

θ

2
) ◦ (cos

ϕ

2
+ i2 sin

ϕ

2
) =

�1,norm,(i1,i2,i3 ◦ �2,norm,(i1,i2,i3) = (cos
ϕ

2
+ i2 sin

ϕ

2
) ◦ (cos

θ

2
+ i3 sin

θ

2
) =

cos
ϕ

2
cos

θ

2
+ i2 sin

ϕ

2
cos

θ

2
+ i3 cos

ϕ

2
sin

θ

2
+ i2i3
︸︷︷︸

i1

sin
ϕ

2
sin

θ

2
.

To simplify the obtained expressions let us define

n0 := cos
ϕ

2
cos

θ

2
, n1 := sin

ϕ

2
cos

θ

2
,

n2 := cos
ϕ

2
sin

θ

2
, n3 := sin

ϕ

2
sin

θ

2
.

Since the coordinates coincide we can eliminate the apostrophe, which finally gives

r′′ = N ◦ r ◦ N∗ =
a(n0 + n1i1 + n2i2 + n3i3) ◦ (i1 − i2) ◦ (n0 − n1i1 − n2i2 − n3i3) =
a(n0 + n1i1 + n2i2 + n3i3)◦
([n1 − n2] + n0(i1 − i2) − n1i3 − n2i3 + n3i2 + n3i1) =
a(n0 + n1i1 + n2i2 + n3i3)◦
([n1 − n2] + [n0 + n3] i1 + [n3 − n0] i2 − [n2 + n1] i3) =
an0 [n1 − n2] + an0([n0 + n3] i1 + [n3 − n0] i2 − [n2 + n1] i3)+
a [n1 − n2] (n1i1 + n2i2 + n3i3)−
−an1 [n0 + n3] − an2 [n3 − n0] + an3 [n2 + n1] =
a (n1 [n1 − n2] + n0 [n3 + n0]) i1+
a (n0 [n3 − n0] + n2 [n1 − n2]) i2+
a (n3 [n1 − n2] − n0 [n2 + n1]) i3.
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By performing operations and rearranging terms with respect to (i1, i2, i3), we finally
obtain

r′′ = λ0 + λ1i1 + λ2i2 + λ3i3,

where

λ0 = 0,

λ1 = a (n1 [n1 − n2] + n0 [n3 + n0]) ,

λ2 = a (n0 [n3 − n0] + n2 [n1 − n2]) ,

λ3 = a (n3 [n1 − n2] − n0 [n2 + n1]) .

2.7 Differential kinematic equations (DKEs)

2.7.1 DKEs in Euler coordinates

If the quaternion A, corresponding to Euler’s description of a rotation, is denoted by
the sequential rotations �, �, and �, respectively, then by (2.128) we have

A = ���, A∗ = �∗�∗�∗,

where (in view of (2.71)–(2.73))

�∗ :=
⎡

⎣

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤

⎦ , �∗ :=
⎡

⎣

1 0 0
0 cos θ sin θ

0 − sin θ cos θ

⎤

⎦ ,

�∗ :=
⎡

⎣

cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎤

⎦ .

This implies

A∗ =
⎡

⎣

cosφ cosψ + sinφ sin θ sinψ cos θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− cosφ sinψ + sinφ sin θ cosψ cos θ cosψ sinφ sinψ + cosφ sin θ cosψ

sinφ cos θ − sin θ cosφ cos θ

⎤

⎦ .

Let us define the dynamics of the Euler angles in the following way:

˙̄�(x,y,z) =
⎛

⎝

0
0
ψ̇

⎞

⎠ , ˙̄θ(x′,y′,z′) =
⎛

⎝

0
0
θ̇

⎞

⎠ , ˙̄ϕ(x′′,y′′,z′′) =
⎛

⎝

0
ϕ̇

0

⎞

⎠ .

This gives

ω̄ = ���� ˙̄�(x,y,z) + �� ˙̄θ(x′,y′,z′) + ˙̄ϕ(x′′,y′′,z′′).
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Define the components of ω̄ as

ω̄ =
⎛

⎝

p

q

r

⎞

⎠ ,

where

p = ψ̇ sin θ sinϕ + θ̇ cosϕ,

q = ψ̇ sin θ cosϕ + θ̇ sinϕ,

r = ψ̇ cos θ + ϕ̇,

⎫

⎪⎬

⎪⎭

from which it follows that

ψ̇ = (p sinϕ + q cosϕ)
1

sin θ
,

θ̇ = p cosϕ − q sinϕ,

ϕ̇ = −(p sinϕ + q cosϕ)
1

cot θ
+ r.

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.129)

Eqs. (2.129) are referred to as the differential kinematic equations (DKEs) in Euler
angles.

2.7.2 DKEs in quaternions: Poisson equation

For a rotation, given by the quaternion �(t), define its derivative as

�̇(t) := lim
�t→0

�(t + �t) − �(t)

�t
.

We can express the term �(t + �t) as a composition of rotations, that is, the first ro-
tation �(t) = λ0(t)+λ(t) is at time t , followed by application of the rotation δ�(�t)

with respect to a new basis, realized at time �t :

�(t + �t) = δ�(�t) ◦ �(t).

Here

δ�(�t) = cos(
ω(t)�t

2
) + ēω̄ sin(

ω(t)�t

2
)

= 1 + ēω̄

ω(t)

2
�t + o(�t),

from which it follows that

�(t + �t) = (1 + ēω̄

ω(t)

2
�t + o(�t)) ◦ �(t)

= �(t) + ω̄(t) ◦ �(t)

2
�t + o(�t).
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Reordering terms and dividing by �t , we obtain

�(t + �t) − �(t)

�t
= ω̄(t) ◦ �(t)

2
+ o(�t)

�t
.

Taking �t → 0, we finally get

�̇(t) = 1

2
ω̄(t) ◦ �(t) = 1

2
�(t) ◦ ω̄(x′,y′,z′)(t). (2.130)

This differential equation for quaternion dynamics is known as the Poisson equation.
If

ω̄(t) = p(t)i1 + q(t)i2 + r(t)i3,

then (since the components are the same)

ω̄(x′,y′,z′)(t) = p(t)i′1 + q(t)i′2 + r(t)i′3.

Substitution the last formula in (2.130) gives the representation of the Poisson equa-
tion in the “open format”:

2λ̇0(t) = −p(t)λ1 (t) − q(t)λ2 (t) − r(t)λ3 (t) ,

2λ̇1(t) = p(t)λ0 (t) + r(t)λ2 (t) − q(t)λ3 (t) ,

2λ̇2(t) = q(t)λ0 (t) − r(t)λ1 (t) + p(t)λ3 (t) ,

2λ̇3(t) = r(t)λ0 (t) + q(t)λ1 (t) − p(t)λ2 (t) .

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.131)

Summary 2.4. From the above developments we can conclude that:

– the vector Poisson equation, given in quaternions (Rodriguez–Hamilton parame-
ters), is linear, but with time-varying parameters ω̄(t),

– the dynamics (2.129), given in the Euler angle, is extremely nonlinear and may
have the non-singularity problem when sin θ = 0 or cot θ = 0.

2.8 Exercises

Exercise 2.1. A disk, mounted at right angles to the OC rod, rotates around the OC

with a constant angular velocity ω1 (see Fig. 2.22). The rod, in turn, performs har-
monic oscillations in the vertical plane XY according to the law

ϕ (t) = ϕ0 sin (ω0t) .

Show that the time dependence of the angular velocity ω of the disk and the angular
acceleration ε are described by the formulas

ω (t) =
√

ω2
1 + ϕ2

0ω2
0 cos2 (ω0t),
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Figure 2.22 The disk, mounted at right angles to the rod.

ε (t) = ϕ0ω0

√

ω2
0 + (ω2

1 − ω2
0

)

cos2 (ω0t).

Exercise 2.2. The “Segner wheel” rotates with an angular acceleration of ε, currently
having an angular velocity of ω (see Fig. 2.23).

Figure 2.23 The “Segner wheel.”

The relative velocity of the outflow of fluid particles is equal to u = const. Show
that the absolute velocity and acceleration of fluid particles in the output section B are
equal to

v =
[

u − ωa

ωa

]

, w =
[ − (ω2 + ε

)

a

2ωu + εa − ω2a

]

,
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assuming that

OA = AB = a, ∠OAB = π/2.

Exercise 2.3. The ends A and B of the rod move along two mutually perpendicular
straight lines OX and OY (see Fig. 2.24). The speed of point A is constant. Show that
the acceleration of any point of the rod is always orthogonal to the axis OY and varies
inversely with the cube of the distance of this point from this axis, that is, show that

wP ∼ 1

x3
P

.

Figure 2.24 The rod moving along two mutually perpendicular straight lines.

Exercise 2.4. Solve the quaternion equation with respect to quaternion X:

a)

X ◦ � = M,

where the quaternions

� = λ0 + λ = (1,0,1,−1) , M = μ0 + μ = (1,1,−1,1)

are given;
b)

� ◦ X2 = X ◦ �.

Exercise 2.5. A rigid body realizes the rotation (a regular precision) with ω1 = const
(the rotation with respect to its main axis of symmetry) and ω2 = const (the rotation
with respect to the axis z), keeping the constant angle θ = ̂(ω1,ω2). We need to de-
scribe the movement of this body in the Rodriguez–Hamilton parameters using the
Poisson equation (2.131).
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3.1 Main dynamics characteristics

3.1.1 System of material points

Consider a set of mobile material points located in space. Now consider such a space of
a coordinate system originating in some point O. The obtained construction, denoted
by S, will be called a system of material points. For the particle i ∈ S, mi represents
its mass, while ri and vi denote its position vector and its velocity with respect to O.
Fig. 3.1 shows these aspects.

Figure 3.1 A set of material points referring to a coordinate system.

Definition 3.1. A pole is a point A in space. If rA is the position vector of the point
A with respect to O, the vector

ri,A := ri − rA (3.1)

is known as the position vector of point i ∈ S with respect to pole A (see Fig. 3.2).

Figure 3.2 Relationship between the pole A and the origin O.
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3.1.2 Three main dynamics characteristics

This chapter is heavily based on the concepts of kinetic energy, momentum, and im-
pulse momentum of a system of material points: the first of them is scalar and the
other two are vectors. The definitions of these concepts are presented below.

Definition 3.2. Consider the system of material points S.

1. The scalar quantity

T := 1

2

∑

i∈S

miv
2
i (3.2)

is called the kinetic energy of S. Here vi := ‖vi‖ is the norm of the velocity vi

of the point i ∈ S.
2. The vector quantity

Q :=
∑

i∈S

mivi (3.3)

is called the impulse of S.
3. The vector quantity

KA :=
∑

i∈S

[

ri,A,mivi

]

(3.4)

is known as the moment of the impulse of S with respect to pole A.

In the following paragraphs of this chapter we will obtain the main dynamics law
of mechanics, namely, we will try to get the exact expressions for Q̇, K̇A, and Ṫ .

3.2 Axioms or Newton’s laws

In addition to the concepts previously introduced, in the formal construction addressed
in this text Newton’s laws are presented in the form of the following axioms.

3.2.1 Newton’s axioms

Axiom 3.1 (Newton’s first law). Every material particle not subject to any external
stimulus, can only move with uniform rectilinear speed or remain at rest.

Axiom 3.2 (Second law of Newton). By the definition, the total force F is

F = Q̇. (3.5)
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Denoting by Fi the force exerted on the particle i ∈ S one can represent F as a total
force acting in the system S, that is,

F :=
∑

i∈S

Fi =
∑

i∈S

mi v̇i . (3.6)

Axiom 3.3 (Newton’s third law). Given i, j ∈ S, we denote by Fij the force exerted
on the particle i by the particle j �= i. Then

Fij = −Fji .

The vector quantity F, defined in (3.6), as we have already mentioned, is the total
force acting on the system S. It can be represented as

F = Fext + Fint ,

where Fext is the force exerted on S by external agents and

Fint :=
∑

i∈S

∑

j∈S

i �=j

Fij (3.7)

is the net of internal forces that results from the actions of the particles among them-
selves.

Lemma 3.1. In any system S of material points

Fint = 0.

Proof. By (3.7) we have

Fint = (F12 + F13 + · · · ) + (F21 + F23 + · · · ) + · · · =
(F12 + F21) + (F13 + F31) · · · + (Fij + Fji

)+ · · ·
and in view of Newton’s third law we get the desired result.

3.2.2 Expression for Q̇

By the previous lemma, Eq. (3.5) is reduced to

Q̇ = Fext . (3.8)

Definition 3.3. Whereas the mass of a system S of material points is given by

M :=
∑

i∈S

mi, (3.9)
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the point CI with position vector

rCI := 1

M

∑

i∈S

miri (3.10)

is called the center of mass or the inertial center of S.

Remark 3.1. From the definition of center of mass (3.10), the expression of the ve-
locity of this point with respect to the origin O is immediately obtained: the derivation
of (3.10) results in

vCI := 1

M

∑

i∈S

mi ṙi = 1

M

∑

i∈S

mivi . (3.11)

Definition 3.4. If Fi represents the action on the material point i ∈ S, the vector
quantity

MFA
:=
∑

i∈S

[

ri,A,Fi

]

(3.12)

is called the moment of forces with respect to pole A.

Lemma 3.2. Only external forces contribute to the moment of the forces (3.12), that
is,

MFA
= MFext,A

:=
∑

i∈S

[

ri,A,Fi,ext

]

. (3.13)

Proof. Since

Fi = Fi,ext + Fi,int ,

expression (3.12) can be rewritten as

MFA
= MFext,A

+ MFint,A
,

where

MFint,A
:=
∑

i∈S

[

ri,A,Fi,int

]

.

But in view of the identities

MFint,A
=
∑

i∈S

[

ri,A,Fi,int

]=
∑

i∈S

⎡

⎣ri,A,
∑

j∈S, j �=i

Fij

⎤

⎦=
∑

i∈S

∑

j∈S, j �=i

[

ri,A,Fij

]

,

MFint,A
=
∑

j∈S

[

rj,A,Fj,int

]=
∑

j∈S

⎡

⎣rj,A,
∑

i∈S, i �=j

Fji

⎤

⎦=
∑

j∈S

∑

i∈S

i �=j

[

rj,A,Fji

]

,
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summation of both identities and using Newton’s third law for i �= j we get

2MFint,A
=
∑

i∈S

∑

j∈S

i �=j

[

ri,A,Fij

]+
∑

j∈S

∑

i∈S

i �=j

[

rj,A,Fji

]=

∑

i∈S

∑

j∈S

i �=j

([

ri,A,Fij

]+ [rj,A,Fji

])=
∑

i∈S

∑

j∈S

i �=j

([

ri,A,Fij

]+ [rj,A,−Fij

])=

∑

i∈S

∑

j∈S

i �=j

[

ri,A − rj,A,Fij

]= 0.

Here we have used the fact that the vector ri,A − rj,A is always parallel to the vector
Fij . So, MFint,A

= 0. The lemma is proven.

In view of this result, it follows that

MFA
= MFext,A

. (3.14)

3.2.3 Expression for K̇A

The following is one of the key results in dynamics.

Theorem 3.1 (Rizal’s formula). In a system of material points with constant masses

K̇A = MFext,A
+ M [vCI ,vA] , (3.15)

where vCI and vA denote, respectively, the velocities of the center of mass CI and the
velocity of the pole A with respect to the origin O.

Proof. By (3.1), the definition (3.4) can be represented as

KA =
∑

i∈S

[ri − rA,mivi] .

Deriving this expression under the consideration that mi is constant for all i ∈ S, we
obtain

K̇A =
∑

i∈S

d

dt
[ri − rA,mivi] =

∑

i∈S

[vi − vA,mivi]+

∑

i∈S

[ri − rA,mi v̇i] = −
[

vA,
∑

i∈S

mivi

]

+
∑

i∈S

[

ri,A,mi v̇i

]

,

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.16)

since
∑

i∈S

[vi ,mivi] =
∑

i∈S

mi [vi ,vi] = 0.
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Now, in view of (3.3) we have

mi v̇i = Q̇i ,

and by Newton’s second law

Fi = Q̇i ,

where Fi is the force acting on i. Therefore (3.16) becomes

K̇A = −M

[

vA,
1

M

∑

i∈S

mivi

]

+
∑

i∈S

[

ri,A,Fi

]

. (3.17)

Using (3.11) and (3.12), expression (3.17) can be rewritten as

K̇A = −M [vA,vCI ] + MFA
= M [vCI ,vA] + MFA

.

The theorem is proven.

Remark 3.2. There are some important special cases of the Rizal’s formula.

1. If vA = 0 or vCI = 0 we have

K̇A = MFext,A
.

2. If additionally

Fext,i = 0 ∀i ∈ S,

then

MFext,A
= 0,

implying

KA = const
t

.

3.3 Force work and potential forces

This section addresses its study, which is predominantly based on the concept of work
of a force. Potential forces are a type of forces with very specific and useful charac-
teristics.
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3.3.1 Elementary and total force work

Definition 3.5. Consider a force F acting on a particle that traverses a path L. Denote
by dr the differential element of L (see Fig. 3.3). The scalar amount

δA := (F, dr) (3.18)

Figure 3.3 Relationship between a force and elementary displacement.

is called the elementary work of force F on path dr, and the value

A :=
∫

L

δA (3.19)

is referred to as the total force work of F on path L.

Remark 3.3. The amount δA in general does not represent the total differential of
some function; that is why we are using δA instead of dA.

Below, we demonstrate some interesting results related with the notions above.

3.3.2 Potential forces

Definition 3.6. Assume that a trajectory L has initial rini and terminal rterm positions.
If the work of force F is such that it does not depend on the form of L but only on its
initial and terminal points, that is,

A = A(rini , rterm) , (3.20)

then it is said that F is a potential force.

Lemma 3.3. Force F is potential if and only if there is a scalar function

� = �(r) (3.21)

such that

F = −∇�(r) . (3.22)
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Proof. Necessity. Since F is potential, we have
∫

L

(F, dr) = A(rini , rterm) , (3.23)

and
∫ r+�r

r
(F, dr) = A(rini , r + �r) − A(rini , r) . (3.24)

Now, the condition (3.23) implies that A is sufficiently smooth, and hence, by the
Taylor expansion, the relation (3.24) can be expressed as

∫ r+�r

r
(F, dr) = (F, dr) + o (|�r|) =

A(rini , r + �r) − A(rini , r) = (∇rA(rini , r) ,�r) + o (|�r|) ,

or equivalently, as

(F,�r) + o (|�r|) = (∇rA(rini , r) ,�r) + o (|�r|) .

This implies

(F − ∇rA(rini , r) ,�r) = o (|�r|) . (3.25)

Tending to �r → dr, the relation (3.25) becomes

(F − ∇rA(rini , r) , dr) = 0,

and, since it is true for any dr, it is concluded that

F − ∇rA(rini , r) = 0,

or

F = ∇rA(rini , r) .

Once the point rini has been fixed and remains constant, it is possible to represent A

in the form

A(rini , r) = −�(r) ,

so that

F = −∇r�(r) .

Sufficiency. Since there exists � : R3 → R,

F (r) = −∇�(r) ,
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and by the definition (3.18) we have

δA = (F, dr) = − (∇�(r) , dr) . (3.26)

But note that the term (∇�(r) , dr) turns out to be the total differential of the func-
tion �:

(∇�(r) , dr) = d�(r) ,

and (3.26) can be represented as

δA = −d�(r) , (3.27)

such that the work of F along path L with initial and final positions rini and rterm is
given by

A =
∫

L

δA = −
∫

L

d�(r) = �(rini) − �(rterm) = A(rini , rterm) .

Here we have used that the integral of a total differential along any way L depends
only on the initial and final positions. The lemma is proven.

Remark 3.4. According to (3.27), in the case of potential forces only δA is effectively
a total differential.

3.3.3 Force power and expression for Ṫ

Definition 3.7. Let Fi be the force exerted on the particle i ∈ S. The elementary work
carried out by all the forces in S is given by

δA :=
∑

i∈S

(Fi , dri ) , (3.28)

which, suppose, is done in the time interval δt . The quantity

N := δA

δt

is said to be the power, developed by these forces.

Lemma 3.4. Let S be a system of particles with constant masses subject to the action
of external and internal forces. The elementary work of the forces and the variation of
the kinetic energy of S keep the relationship

dT = δA, (3.29)

or equivalently,

Ṫ = N. (3.30)
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Proof. From (3.18) it follows that for S

δA =
∑

i∈S

(Fi , dri ) =
∑

i∈S

(mi v̇i , dri ) ,

where Newton’s second law and the fact that mi (i ∈ S) is constant have been used.
Equivalently, using the definitions of derivative and differential and the properties of
the internal product, we have

δA =
∑

i∈S

lim
�t→0

(

mi

�vi

�t
,�ri

)

=
∑

i∈S

mi lim
�t→0

(

�vi ,
�ri

�t

)

=
∑

i∈S

mi (dvi ,vi ) ,

where, considering the expression for the differential of the internal product and the
definition of kinetic energy T of S, we get

δA = d

(

1

2

∑

i∈S

mi (vi ,vi )

)

= dT ,

which implies (3.30).

3.3.4 Conservative systems

Definition 3.8. Let S be a system in which all forces are potentials, that is, the force
acting on the particle i ∈ S is given by Fi = −∇�(ri ), where ri is the position of the
particle. Such a system is called conservative.

Lemma 3.5. In a system S that is conservative the property

E (t) := T (t) +
∑

i∈S

�(ri (t)) = const
t

(3.31)

is met.

Proof. Using (3.28) and the property of potential forces we have

δA =
∑

i∈S

(Fi , dri ) = −
∑

i∈S

(∇�(ri ) , dri ) = −
∑

i∈S

d�(ri ) ,

whose replacement in (3.29) leads to the relationship

d

[

T +
∑

i∈S

�(ri )

]

= 0,

or equivalently, to (3.31).
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Remark 3.5. The quantities
∑

i∈S �(ri (t)) and E (t) receive the names of potential
energy and mechanical energy of the system S, and consequently, the result (3.31) of
the previous corollary is called the principle of conservation of mechanical energy,
which justifies the name of conservative systems.

3.4 Virial of a system

In systems of material points certain average characteristics have interesting relation-
ships. These aspects are studied in this section.

3.4.1 Main definition of virial

Definition 3.9. Consider a scalar function β (t) for t ≥ 0. The amount

βτ := 1

τ

∫ τ

t=0
β (t) dt, τ > 0, β0 = β (0) ,

is said to be the average value of β (t) in the interval [0, τ ].

Definition 3.10. Suppose that S is a system of material points subject to the action of
the forces Fi (t), i ∈ S. The amount

Vτ := −1

2

(
∑

i∈S

(Fi (t) , ri (t))

)

τ

(3.32)

is referred to as the virial of S.

In the following the forces and the position vectors are dependent on t , but this
dependency by economy in the notation is omitted.

Theorem 3.2 (On the virial of the system). For the virial of a particle system S we
have

Vτ = Tτ (3.33)

if any of two conditions are met:

a) trajectories and velocities of system points are bounded and τ = ∞;
b) the trajectories of the points of the system are periodic with period τper and

τ = τper .

Proof. Define

G :=
∑

i∈S

(mivi , ri ) , (3.34)
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whose time derivative is

Ġ =
∑

i∈S

[(mi v̇i , ri ) + (mivi ,vi )] =
∑

i∈S

(Fi , ri ) + 2T .

Here we have used the Newton’s second law as well as the definition (3.2) for the
kinetic energy. Integrating this expression in time interval [0, τ ], τ > 0, and dividing
by τ , we get

1

τ
[G(τ) − G(0)] = 1

τ

∫ τ

0

∑

i∈S

(Fi (t) , ri (t)) dt + 2

τ

∫ τ

0
T (t) dt

or, with the concept of average quantity and definition of virial (3.32) it follows that

1

τ
[G(τ) − G(0)] = 2 (−Vτ + Tτ ) . (3.35)

a) If the trajectories of the points of S are bounded, there exists

G+ := max
t≥0

|G(t)| < ∞,

which leads to

lim
t≥0

1

τ
[G(τ) − G(0)] = 0,

and in view of (3.35) it follows that V∞ = T∞.
b) If the trajectories of the points of S are periodic with period τper , one has

G
(

τper

)= G(0) ,

and by (3.35) we get

Tτper = Vτper .

3.4.2 Virial for homogeneous potential energies

The following results concern a special case when the potential energy is homoge-
neous.

Definition 3.11. A function f : Rn → R with the property

f (λr) = λsf (r) , λ > 0,

is said to be positively homogeneous (or simply, homogeneous) with homogeneity
order s.

We also have

Fi = −∇�i (ri ) , i ∈ S. (3.36)
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Lemma 3.6. Suppose that �i is homogeneous with homogeneity order s and that
the trajectories of the points in S comply with the restrictions of the virial theorem,
Theorem 3.2. Then

Tτ = s

2
�τ , (3.37)

where

�τ :=
(
∑

i∈S

�i (ri )

)

τ

.

Proof. By the virial theorem, Theorem 3.2, with τ = ∞ or τ = τper , depending on
the case, we have

Tτ = Vτ . (3.38)

Now, using the definition of virial of the system (3.32) and in view of (3.36),

Vτ = 1

2τ

∫ τ

0

∑

i∈S

(∇r�i (ri ) , ri ) dt. (3.39)

But, we have

(∇r�i (r) , r) = ∂�i (λr)
∂λ

∣
∣
∣
∣
λ=1

.

Hence, (3.39) can be represented as

Vτ = 1

2

∑

i∈S

1

τ

∫ τ

0

∂�i (λri )

∂λ

∣
∣
∣
∣
λ=1

dt,

and, in view of homogeneity �i ,

Vτ = 1

2

∑

i∈S

1

τ

∫ τ

0

∂λs�i (ri )

∂λ

∣
∣
∣
∣
λ=1

dt =

s

2
λs−1

∣
∣
∣
λ=1

∑

i∈S

1

τ

∫ τ

0
�i (ri ) dt = s

2

(
∑

i∈S

�i (ri )

)

τ

= s

2
�τ .

The lemma is proven.

Corollary 3.1. Given

Tτ + �τ = 1

τ

∫ τ

0

[
∑

i∈S

miv
2
i (t) +

∑

i∈S

�i (ri (t))

]

dt =
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1

τ

∫ τ

0

[

T (t) +
∑

i∈S

�(ri (t))

]

dt,

taking into account that all forces are potential with the homogeneous potential energy
with the index s, by (3.31) we have

Tτ + �τ = E = const
t

.

Combining this equation with (3.37) leads to

Tτ = s

s + 2
E, �τ = 2

s + 2
E. (3.40)

3.5 Properties of the center of mass

In this section the dynamic properties of the center of mass (or inertia) are established.

3.5.1 Dynamics of the center of inertia (mass)

Lemma 3.7. In a system S of particles i ∈ S the dynamics of the center of mass with
the coordinate vector rCI is as follows:

M r̈CI = Fext , (3.41)

where M represents the total mass of the system S.

Proof. By Newton’s second law,

Q̇ = Fext

or, considering mi constant for all i ∈ S and using the definition of inertial cen-
ter (3.10), we have

Q̇ = d

dt

∑

i∈S

mivi = M
d

dt

1

M

∑

i∈S

mivi = M r̈CI ,

which gives (3.41).

3.6 “King/König/Rey” theorem

3.6.1 Principle theorem

Theorem 3.3 (König theorem). Suppose that we deal with two reference systems: one
absolute with origin O and another relative with origin O ′ (see Fig. 3.4). The kinetic
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Figure 3.4 Relationship between the coordinates of an absolute and an auxiliary system for calculating
kinetic energy.

energy of a system S containing some material particles can be calculated as

T = TO ′ + Trel,O ′ + M
(

vO ′ ,vCI,O ′
)

, (3.42)

where

• vO ′ is the absolute velocity of the pole (origin) O ′,
• vCI,O ′ is the velocity of the center of mass with respect to the pole O ′,
• TO ′ := 1

2Mv2
O ′ is the kinetic energy of the mass of S if it were concentrated in the

pole O ′,
• Trel,O ′ := 1

2

∑

i∈S miv
2
i,O ′ is the kinetic energy of S calculated with respect to the

pole O ′,
• vi,O ′ is the velocity of the point i ∈ S relative to O ′.

Proof. By the definition of the kinetic energy (3.2)

T = 1

2

∑

i∈S

mi (vi ,vi ) ,

and taking into account that

vi = vO ′ + vi,O ′ ,

we have

T = 1

2

∑

i∈S

mi

[

(vO ′ ,vO ′) + (vi,O ′ ,vi,O ′
)+ 2

(

vO ′ ,vi,O ′
)]=

1

2
Mv2

O ′ + 1

2

∑

i∈S

miv
2
i,O ′ +

(

vO ′ ,
∑

i∈S

mivi,O ′

)

.
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Finally, multiplying and dividing by M and in view of (3.11) it follows that

T = TO ′ + Trel,O ′ + M
(

vO ′ ,vCI,O ′
)

.

Corollary 3.2. The König theorem has two very important particularizations.

1. If the origin O ′ coincides with the center of mass (inertia) of the system, then
vCI,O ′ = 0 and

T = TO ′ + Trel,O ′ . (3.43)

2. If S is a rigid body, whose pivot coincides with O ′, then there exists a vector
ω relative to O ′ such that, if ri,O ′ denotes the position vector of the point i ∈ S

relative to O ′, the following relation holds:

vi,O ′ := d

dt
ri,O ′ = [ω, ri,O ′

]

and

v2
i,O ′ = ω2r2

i,O ′ sin2 (ω̂, ri,O ′
)

,

so that

Trel,O ′ = ω2

2

∑

i∈S

mir
2
i,O ′ sin2 (ω̂, ri,O ′

)= ω2

2

∑

i∈S

mid
2
i ,

where

di := ri,O ′ sin
(

ω̂, ri,O ′
)

denotes the distance to the line of action of ω (the axis of rotation). The quantity

Iω :=
∑

i∈S

mid
2
i (3.44)

is called the instantaneous moment of inertia or simply moment of inertia of the
rigid body S with respect to the axis of ω. That is why

Trel,O ′ = 1

2
Iωω2. (3.45)

3.6.2 Moment of inertia and the impulse moment with respect
to a pivot

Definition 3.12. In general terms, for a system S of points and an axis AA′, the quan-
tity

IAA′ :=
∑

i∈S

mid
2
i , (3.46)
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where di denotes the distance from i ∈ S to AA′, is called the moment of inertia of
S with respect to the axis AA′.

The concept of moment of inertia also appears in other developments, as the fol-
lowing exercise shows.

3.6.3 A rigid flat body rotating in the same plane

Let S be a rigid flat body that rotates in its own plane with respect to the pivot O ′ with
angular velocity ω (Fig. 3.5). The impulse moment with respect to the pivot is given
by

KO ′ :=
∑

i∈S

[

ri,O ′ ,mivi

]=
∑

i∈S

mi

[

ri,O ′ ,vi

]

Figure 3.5 Flat body rotating in its plane with respect to a pivot O ′.

and, by Euler’s theorem (see Chapter 2),

vi = [ω, ri,O ′
]

,

which implies

KO ′ =
∑

i∈S

mi

[

ri,O ′ ,
[

ω, ri,O ′
]]=

∑

i∈S

mi

[(

ri,O ′ , ri,O ′
)

ω − (ri,O ′ ,ω
)

ri,O ′
]

,
(3.47)

where the alternative formula of the triple vector product has been used (see Chap-
ter 1). Whereas

(

ri,O ′ ,ω
)= 0 ∀i ∈ S

and
(

ri,O ′ , ri,O ′
)= d2

i
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(where di is the distance from point i ∈ S to the axis of rotation), one has

KO ′ =
(
∑

i∈S

mid
2
i

)

ω,

or, by the definition of moment of inertia (3.44), we finally arrive at the presentation

KO ′ = Iωω. (3.48)

Rotation of a body with geometric and mass symmetry

The result of the previous subsection is valid in a slightly more general situation,
namely, when we deal with the rotation of a body with geometric and mass symme-
try with respect to the axis of rotation. To see this, recall from Chapter 1 that

ri,O ′ =
(

ω, ri,O ′
)

ω2 ω +
[

ω,
[

ri,O ′ ,ω
]]

ω2 ,

which, after substitution in (3.47), leads to

KO ′ =
∑

i∈S

mi

{(
(

ri,O ′ , ri,O ′
)− 1

ω2

(

ri,O ′ ,ω
)2
)

ω−

1

ω2

(

ri,O ′ ,ω
) [

ω,
[

ri,O ′ ,ω
]]
}

,

(3.49)

where the term
[

ω,
[

ri,O ′ ,ω
]]

has radial direction with respect to the axis of rotation.
So, under the condition of geometric and mass symmetry with respect to the axis of
rotation, for any i ∈ S, there exists i∗ ∈ S (the mirror image of i ∈ S) such that

mi = mi∗ , ri,O ′ = ri∗,O ′ , ri,O ′ = −ri∗,O ′ ,

and therefore,
[

ω,
[

ri,O ′ ,ω
]]+ [ω,

[

ri∗,O ′ ,ω
]]= 0,

where the second term on the right side of (3.49) is canceled, so that

KO ′ =
∑

i∈S

mi

(
(

ri,O ′ , ri,O ′
)− 1

ω2

(

ri,O ′ ,ω
)2
)

ω. (3.50)

But

(

ri,O ′ , ri,O ′
)= r2

i,O ′ and
1

ω2

(

ri,O ′ ,ω
)2 =

(

comp
ri,O′
ω

)2

and by the Pythagorean theorem

d2
i = r2

i,O ′ −
(

comp
ri,O′
ω

)2
.
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In view of that, (3.50) may be rewritten as

KO ′ =
(
∑

i∈S

mid
2
i

)

ω = Iωω, (3.51)

and since, in this case, the location of O ′ is not important, unless it is on the axis of
rotation (we may move ω along the rotation axis), the notation

Kω := KO ′

can be used in all situations with geometric and mass symmetry with respect to the
axis of rotation.

3.6.4 Calculation of moments of inertia for different rigid bodies

The result (3.45) makes use of the moment of inertia, which is a function of the ge-
ometry and the distribution of the mass of the rigid body in question. In the following
examples this mechanical characteristic is calculated for several geometries.

Example 3.1. Using the definition (3.46), let us calculate the moment of inertia Ixx′
(with respect to the indicated axis) of the bodies shown in Fig. 3.6. All bodies have
mass M of uniform distribution.

Figure 3.6 Some bodies of simple geometry for the calculation of their moment of inertia.
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i) For the disc, with respect to its center, we have

Ixx′ =
∑

i∈S

mid
2
i =

∫ R

ρ=0
ρ2dm(ρ) ,

where dm(ρ) is the mass of the elemental ring of radius ρ and width dρ, whose
area is

dA = 2πρdρ,

while the total area of the disk is

A = πR2.

Given the condition of uniform distribution of the mass, it follows that

dm = M

A
dA = 2M

R2
ρdρ,

so that

Ixx′ = 2M

R2

∫ R

0
ρ3dρ = MR2

2
.

ii) For the disc, regarding a diameter,

Ixx′ =
∑

i∈S

mid
2
i = 4

∫ π/2

ϕ=0

∫ R

ρ=0
ρ2 sin2 ϕdm(ρ,ϕ) ,

where dm(ρ,ϕ) is the mass of the differential element located at the point (ρ,ϕ)

and whose area is

dA = ρdρdϕ.

Since the mass has uniform distribution and the total area is

A = πR2,

we have

dm = M

A
dA = M

πR2
ρdρdϕ.

Hence,

Ixx′ =
∑

i∈S

mid
2
i = 4M

πR2

∫ π/2

ϕ=0

∫ R

ρ=0
ρ3 sin2 ϕdρdϕ =

MR2

π

∫ π/2

ϕ=0
sin2 ϕdϕ = MR2

π

∫ π/2

ϕ=0

(
1 − cos 2ϕ

2

)

dϕ =
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MR2

2π

[

ϕ − sin 2ϕ

2

]π/2

0
= MR2

4
.

iii) For the shown solid cylinder the same procedure is followed as for the case disk
(i), only here dm(ρ) is the mass of the elementary hollow cylinder of radius ρ,
width dρ, and height h, whose volume is

dV = 2πhρdρ.

Since the total volume of the cylinder V is

V = πhR2,

in view of the uniform mass distribution we have

dm = M

V
dV = 2M

R2 ρdρ.

So,

Ixx′ = 2M

R2

∫ R

0
ρ3dρ = MR2

2
.

iv) For the bar without thickness, with respect to the axis shown, it follows that

Ixx′ =
∑

i∈S

mid
2
i = 2

∫ l/2

s=0
s2dm,

where dm is the mass of the differential element of length ds. Because of the
uniformly distributed mass condition, we have

dm = M

l
ds,

which is why

Ixx′ = 2
M

l

∫ l/2

s=0
s2ds = Ml2

12
.

v) For the solid sphere we have

Ixx′ =
∑

i∈S

mid
2
i =

∫

M

d2 (ρ,ϕ)dm(ρ,ϕ, θ) ,

where dm(ρ,ϕ, θ) denotes the mass of the differential element with volume

dV = ρ2 sinϕdρdϕdθ
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and d (ρ,ϕ) is its distance to the axis xx′, which is

d (ρ,ϕ) = ρ sinϕ.

Since the total volume of the body is

V = 4

3
πR3

and the mass is distributed evenly, we get

dm = M

V
dV = 3M

4πR3
ρ2 sinϕdθdρdϕ.

Therefore,

Ixx′ = 3M

4πR3

∫ π

ϕ=0

∫ R

ρ=0

∫ 2π

θ=0
ρ4 sin3 ϕdθdρdϕ = 3MR2

10

∫ π

0
sin3 ϕdϕ.

Taking into account that
∫ π

ϕ=0
sin3 ϕdϕ = −

∫ π

ϕ=0
sin2 ϕd (cosϕ) − sin2 ϕ cosϕ

∣
∣
∣

π

0
+

∫ π

ϕ=0
cosϕd

(

sin2 ϕ
)

= 2
∫ π

ϕ=0
sinϕ cos2 ϕdϕ =

−2
∫ π

ϕ=0
cos2 ϕd (cosϕ) − 2

∫ π

ϕ=0
cos2 ϕd (cosϕ) =

−2

3
cos3 ϕ

∣
∣
∣

π

0
= −2

3
(−1 − 1) = 4

3
,

we may conclude that

Ixx′ = 2

5
MR2.

vi) Finally, for the solid cone with respect to its longitudinal axis, the result of part
(i) will be used. So,

Ixx′ =
∑

i∈S

mid
2
i =

∫ h

z=0
dIxx′ (z) ,

where dIxx′ (z) denotes the moment of inertia with respect to its center of the
elementary disk of radius ρ and height dz (see Fig. 3.6(vi)). Now, given the
geometry we have the relationship

ρ = R

h
z,
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so the volume of the differential disk results in

dV = πρ2dz = πR2

h2 z2dz,

while that of the whole body is

V = π

3
R2h.

The elementary disk has mass dm:

dm = M

V
dV = 3M

h3
z2dz,

and according to the result (i),

dIxx′ = ρ2

2
dm = 3MR2

2h5
z4dz,

which gives

Ixx′ = 3MR2

2h5

∫ h

0
z4dz = 3

10
MR2.

3.6.5 König theorem application

The following two examples are solved by a direct application of the König theorem,
Theorem 3.3.

Example 3.2. The rigid circular chain of Fig. 3.7 has mass M evenly distributed and
rolls with constant speed as shown. Determine its kinetic energy.

Figure 3.7 Rigid chain rolling with constant speed.

Locate two systems: one absolute fixed to the floor and the other relative fixed to
the center of the circle formed by the chain. Since in this case the center of inertia
coincides with the origin O ′ of the relative system, the result (3.43) is applicable, and
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therefore

T = 1

2
MV 2 + 1

2

∑

i∈S

miv
2
i,O ′ .

But, applying the results of Chapter 2, point A contacts the floor:

vA = vO ′ + vA,O ′ = V + vA,O ′ = 0,

which is why

vA,O ′ = −V.

And since all the points of the chain have velocity relative to O′ of equal magnitude,
we have

vi,O ′ = vA,O ′ = V,

which implies

T = 1

2
MV 2 + 1

2
MV 2 = MV 2.

Example 3.3. The disk in Fig. 3.8 has mass M evenly distributed and rolls with con-
stant speed, as indicated. Determine its kinetic energy.

Figure 3.8 Rolling disc.

The solution procedure is very similar to that followed in the preceding example.
An absolute coordinate system fixed to the floor and a relative one fixed to the center
of the disk are placed. Since the center of mass of the disk coincides with the origin
O′ of the relative system, the result (3.43) is directly applicable, and in this case the
relative kinetic energy is given by (3.45). So,

T = 1

2
MV 2 + 1

2
Iωω2. (3.52)

By the results of Chapter 2, we have for the point P , contacting with the floor,

vP = vO ′ + vP,O ′ = V + [ω, rP,O ′
]= 0. (3.53)
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But since V and
[

ω, rP,O ′
]

are of the opposite directions and considering that
rP,O ′ = R, from (3.53) we obtain

V − ωR = 0,

and as a consequence

ω = V

R
. (3.54)

On the other hand, the moment of inertia of the disk with respect to the axis of rotation
is given by (see the exercise in the end of the chapter)

Iω = MR2

2
. (3.55)

So the substitution of (3.54) and (3.55) in (3.52) finally leads to

T = 3

4
MV 2.

3.6.6 Steiner’s theorem on the inertia moment

The result that follows is extremely useful in the calculation of moments of
inertia.

Theorem 3.4 (Steiner). Consider the solid of mass M depicted in Fig. 3.9. Denote
by IAA′ and IOO ′ the moments of inertia with respect to the axes AA′, which does not
pass through the center of mass, and OO ′, which does and which is parallel to AA′
and is separated from it at a distance d . We have the following relationship between
such moments of inertia:

IAA′ = IOO ′ + Md2.

Figure 3.9 Solid body rotating around an axis that does not pass through its inertial center.
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Proof. Denote by di,AA′ and di,OO ′ the distances of the material point i ∈ S up to the
axes AA′ and OO ′, respectively. By the definition (3.46) we have

IAA′ =
∑

i∈S

mid
2
i,AA′ .

But, by the law of cosines

d2
i,AA′ = d2 + d2

i,OO ′ − 2ddi,OO ′ cosαi

(see Fig. 3.10), and therefore

IAA′ =
∑

i∈S

mi

(

d2 + d2
i,OO ′ − 2ddi,OO ′ cosαi

)

=

Md2 + IOO ′ − 2d
∑

i∈S

midi,OO ′ cosαi.
(3.56)

Figure 3.10 Diagram of distances of a point i ∈ S to the axes OO ′ and AA′.

Now, note that if CI is chosen as the origin of the coordinate system, we have

rCI := 1

M

∑

i∈S

miri = 0.

By the component representation r = (x, y, z)T it follows that
∑

i∈S

mix = 0,
∑

i∈S

miy = 0,
∑

i∈S

miz = 0. (3.57)

If in Fig. 3.10 the coordinate system is selected in such a way that the axes z and OO ′
are coincident and the x-axis is directed towards the axis AA′, it follows that

di,OO ′ cosαi = xi,

from which by (3.57) we obtain
∑

i∈S

midi,OO ′ cosαi = 0,

and the affirmation follows from (3.56).
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Example 3.4. Calculate the moment of inertia of the solid cylinder (see Fig. 3.11)
with respect to the axis shown. The body has a uniformly distributed mass M .

Figure 3.11 Solid cylinder rotating on a transverse axis.

Here the Steiner’s theorem, Theorem 3.4, may be directly applicable. To do that let
us consider the volume of the elementary disk, which is

dV = πR2dx.

Since the total volume of the solid is

V = πR2h,

the following mass of the elementary disk results:

dM = M

V
dV = M

h
dx.

So, using the result of the aforementioned example (see Exercise (ii)), we have

dIOO ′ = MR2

4h
dx,

where OO ′ represents the axis parallel to AA′ passing through the center of inertia of
the considered elementary disk. Now, by Steiner’s theorem, Theorem 3.4,

dIAA′ = M

h

(
R2

4
+ x2

)

dx,

from which we get

IAA′ = 2
∫ h/2

x=0
dIAA′ (x) = 2M

h

∫ h/2

x=0

(
R2

4
+ x2

)

dx

= M

4

(

R2 + h2

3

)

.

The examples that follow illustrate some points studied in this chapter; particularly,
the first two make use of the concept of center of velocities (see Chapter 2) and its
applicability in the solution of kinematic problems.
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Example 3.5. In the articulated bar of Fig. 3.12 each half has length l and mass m,
and in addition, the bar is placed in such a way that the articulation is exactly half of
the opening in the floor, which has exactly a width l. In the initial moment, to which
the situation shown corresponds, the bar begins to fall. Determine the velocity of the
joint, denoted by D, at the moment when the ends of the bar are touching the corners
of the opening. Consider that the slippage is frictionless.

Figure 3.12 Articulated bar about to fall.

The general situation is illustrated in Fig. 3.13. First it will be shown that when the
bar falls, the velocities of the contact points of the bar with the corners of the opening
have direction towards the articulation D.

Figure 3.13 Bar falling.

a) For this, locate two coordinate systems: one absolute fixed to the floor and the
other fixed relative to D. Given the symmetry conditions of the problem, it is
enough to analyze the situation for the right half. So, for point B of contact we
have (see Chapter 2)

vB = vD + [ω,DB
]

, (3.58)

where

ω = |ϕ̇| . (3.59)

On the other hand, if sinϕ �= 0 we have

∣
∣DB

∣
∣= l/2

sinϕ
(3.60)
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and

x = l

2
cotϕ.

The temporary derivation of this last relation leads to

ẋ = − l

2 sin2 ϕ
ϕ̇,

so that

|ϕ̇| = 2

l
|ẋ| sin2 ϕ. (3.61)

Considering that vD = |ẋ|, that ω is orthogonal to DB, and that the relations
(3.59) and (3.60) hold, the following equality is reached:

∣
∣
[

ω,DB
]∣
∣

vD

= ω
∣
∣DB

∣
∣

vD

= l |ϕ̇|
2 |ẋ| sinϕ

,

or, with (3.61),
∣
∣
[

ω,DB
]∣
∣

vD

= sinϕ. (3.62)

Fig. 3.14 shows a vector diagram with the vectors vD and [ω,DB]. From this
diagram and (3.58) we can see that

vB = (vD − ∣∣[ω,DB
]∣
∣ sinϕ

)

i − ∣∣[ω,DB
]∣
∣ cosϕj.

Figure 3.14 Vectors vD and [ω,DB].

But in view of (3.62) the last formula may be represented as

vB = vD cosϕ (cosϕi − sinϕj) ,

from which it follows that the direction of vB is towards D. This means that the
point B is always in the contact with the corner.
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b) The knowledge of the direction of vB allows locating the center of velocities C

of the right half of the bar; in particular, at the moment of interest, i.e., when
the bar is detaching from the floor, it has the configuration of Fig. 3.15. In this
situation it is known that with respect to C (the center of velocities) there exists
� such that

vD = [�,DC
]

Figure 3.15 Bar detaching from the floor.

with � orthogonal to DC, so that

vD = �
∣
∣DC

∣
∣ . (3.63)

From Fig. 3.15 it is also seen that

l
∣
∣DC

∣
∣
= sin 30◦ = 1

2
,

so
∣
∣DC

∣
∣= 2l.

But we deal with a situation with no loss of energy, and therefore

T (t) +
∑

i∈S

�(ri (t)) = const
t

. (3.64)

So, taking g as the acceleration of gravity and as a reference level for potential
energy the level of the floor, we have for t = 0

T (0) = 0,
∑

i∈S

�(ri (0)) = 0, (3.65)

whereas for the final moment tf (see Fig. 3.15)

T
(

tf
)= 1

2
I��2,

∑

i∈S

�
(

ri

(

tf
))= −1

2
mgl cos 30◦ = −

√
3

4
mgl.

(3.66)
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Now, by Steiner’s theorem

I� = IA + m
∣
∣AC

∣
∣
2
,

where IA represents the moment of inertia with respect to the axis perpendicular
to the plane of Fig. 3.15 and passing through the center of inertia, denoted by A,
of the right half of the bar. Since

IA = ml2

12
,

∣
∣BC

∣
∣= ∣∣DC

∣
∣ cos 30◦ = √

3l

and

∣
∣AC

∣
∣=
√
∣
∣BC

∣
∣
2 + (l/2)2 = l

√

3 + 1/4 = √
13l/2.

Therefore

I� = IA + m
∣
∣AC

∣
∣
2 =
(

1

12
+ 13

4

)

ml2 = 10

3
ml2,

and as a result

T
(

tf
)= 1

2

(
10

3
ml2
)

�2 = 5

3
ml2�2. (3.67)

The results (3.65), (3.66), and (3.67) together with (3.64) give

5

3
ml2�2 =

√
3

4
mgl

and

�2 = 3
√

3

20

g

l
.

In view of (3.63), we finally obtain

vD = �
∣
∣DC

∣
∣=
√

3
√

3

20

g

l
2l =

√

3
√

3

5
gl.

Example 3.6. The articulated bars in Fig. 3.16 have length l and mass M and the
structure is tied with a weightless rope at points B and C. At time t = 0 the string is
cut and the assembly begins to slide without friction. Determine vB (h) considering
that the initial height is h0.

Given the symmetry of the structure, the problem can be reduced to the study of
the left half, which is shown in Fig. 3.17. From this figure we have

vB = [ω,AB
]

,
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Figure 3.16 Set of articulated bars.

Figure 3.17 Left half of the structure of articulated bars.

where, for the system shown,

ω (t) = ω (t)k, ω (t) = ϕ̇ (t) ,

and

AB = l (− sinϕi + cosϕj) ,

so that

vB = −ωl (cosϕi + sinϕj) . (3.68)

Now, considering that the only force to be taken into account (weight) is potential, it
is true that

E (t) := T (t) +
∑

i∈S

�(ri (t)) = const
t

. (3.69)

In the initial state (t = 0), we have
∑

i∈S

�(ri (0)) = Mgh0, T (0) = 0,

where g denotes the gravity constant. Hence, for all t ≥ 0

E (t) ≡ Mgh0. (3.70)
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At the general instant t the potential energy is
∑

i∈S

�(ri (t)) = Mgh(t) , (3.71)

whereas, taking reference points absolute and relative to A and B, respectively, for the
application of the König theorem, we have for the kinetic energy

TA (t) = TB (t) + Trel,B (t) + 2M
(

vB (t) ,vCI,B (t)
)

, (3.72)

where

TB = 1

2
(2M)v2

B = Ml2ω2.

Since vB = ωl, it follows that

Trel,B = 2

(
1

2
Iωω2

)

= Iωω2,

where Iω is the moment of inertia of a single bar with respect to the axis of rotation
(perpendicular to the plane of Fig. 3.17 and passing B), which is given by

Iω =
∫ l

0
x2dm =

∫ l

0
x2 M

l
dx = 1

3
Ml2.

So,

Trel,B = 1

3
Ml2ω2.

To calculate the third term, vCI,B is required. The position vector of CI with respect
to point B, expressed in the absolute system located in A, is

rCI,B = − l

2
cosϕj,

where

vCI,B = l

2
ϕ̇ sinϕj,

which is why

(

vB,vCI,B

)= −1

2
l2ω2 sin2 ϕ.

By the previous results and in view of (3.72) we have

TA = Ml2ω2
(

4

3
− sin2 ϕ

)

= Mω2
(

l2

3
+ h2

)

, (3.73)
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because

sin2 ϕ = l2 − h2

l2
. (3.74)

Substitution of (3.70), (3.71), and (3.73) in (3.69) leads to

ω2
(

l2

3
+ h2

)

+ gh = gh0,

and hence

ω =

⎛

⎜
⎜
⎝

g
h0 − h

l2

3
+ h2

⎞

⎟
⎟
⎠

1/2

. (3.75)

Relations (3.74) and (3.75) together with (3.68) finally allow to obtain

vB (t) = −

⎛

⎜
⎜
⎝

g
h0 − h(t)

l2

3
+ h(t)2

⎞

⎟
⎟
⎠

1/2
(

hi +
√

l2 − h(t)2j
)

.

3.7 Movements with friction

Friction appears on the contact surface with bodies when they tend to slide on a surface
or they are sliding. In the first case the phenomenon is called static friction, and in the
second, dynamic friction. The first has the effect of producing a force that opposes
starting the movement and whose maximum value is reached when the slip is about
to begin. This condition allows to derive a simple relation for the calculation of said
force. Regarding dynamic friction, its definition is given below.

Axiom 3.4. Dynamic friction force appears on the contact surface, is proportional to
the pressure force, and acts in the direction opposite to the movement (see Fig. 3.18),
namely,

Ff r = −ff rNeS, |eS | = 1, (3.76)

Figure 3.18 Body subject to friction.
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where

– ff r is called a friction coefficient which depends only on the physical (non-
geometric) characteristics of the surfaces in contact,

– N is the magnitude of the pressure force perpendicular to the contact surfaces,
– eS represents a unitary vector in the direction of the tendency to slide (in the di-

rection of the rolling force FS in Fig. 3.18).

In Fig. 3.19 it is depicted how the amplitude of a friction force
∥
∥Ff r

∥
∥ depends on

the amplitude of the applied external force ‖Q‖.

Figure 3.19 How a friction force
∥
∥Ff r

∥
∥ depends on the amplitude of the applied external force ‖Q‖.

Example 3.7. Let m, α, and ff r be (see Fig. 3.20) the mass of the body, the angle of
the inclined plane, and the coefficient of friction, respectively. If m and ff r are given,
calculate α∗, which is the angle of the plane for which motion is initiated.

Figure 3.20 Body on an inclined plane.

The sliding condition is

FS ≥ Ff r ,

that is,

mg sinα ≥ ff rN = ff rmg cosα,
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which gives

tanα ≥ ff r ,

or finally,

α∗ = arctanff r .

Example 3.8. Consider the solid sphere on the inclined plane (see Fig. 3.21) with the
mass m and the radius ρ. The friction coefficient is assumed to be ff r . Calculate α∗,
the critical angle for which the sphere begins to slide, in addition to rolling.

Figure 3.21 Sphere on an inclined plane.

The force responsible for the bearing of the sphere is due to friction, so first, let us
determine the relationship between the value of this force and the angle of the plane
under conditions of pure bearing. Under these conditions we have by Newton’s second
law

mv̇ = FS − Ff = mg sinα − Ff , (3.77)

where Ff denotes the force generated by the friction, which under the conditions
indicated in Fig. 3.21 gives

Ff ≤ Ff r,

since it is not necessarily close to starting the slide. On the other hand, the magnitude
of momentum of the impulse around the axis of rotation of the sphere is given by
(see (3.51))

Kω = Iωω,

where Iω is the moment of inertia of the sphere around a diameter and ω is its angular
velocity. From the exercise above we have

Kω = 2

5
mρ2ω,

so that

K̇ω = 2

5
mρ2ω̇. (3.78)
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Now, by the Rizal’s formula

K̇ω = Ff ρ,

which in combination with (3.78) leads to

mρω̇ = 5

2
Ff . (3.79)

Additionally, since vA = 0, we have the cinematic relation

v = ρω,

and hence,

v̇ = ρω̇. (3.80)

This expression being substituted into (3.79) gives

mv̇ = 5

2
Ff

and, in view of (3.77), this implies

5

2
Ff = mg sinα − Ff ,

or equivalently,

Ff = 2

7
mg sinα. (3.81)

On the other hand, from (3.76), the maximum friction force that can be generated at
contact point A is given by

Ff r = ff rN,

with

N = mg cosα,

that is,

Ff r = ff rmg cosα. (3.82)

The value α∗ corresponds to the situation when

Ff = Ff r ,

which using (3.81) and (3.82) gives

α∗ = arctan

(
7

2
ff r

)

.
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3.8 Exercises

Exercise 3.1. A uniform circular cone is placed on the base of a smooth horizontal
table. The cone is given the angular velocity ω0, so that the speeds of the points of its
axis of symmetry are zero. Show that the angular velocity of the cone will be equal to

ω = 3 (1 + k)

13 + 3k
ω,

if a ball is dropped from its top to the base, the mass of which is k times less than the
mass of the cone.

Exercise 3.2. Two identical balls can move without friction on the sides of a right
angle located in a horizontal plane. Balls carry charges of different signs and begin
to move from a state of rest. Show that they will simultaneously be at the top of the
corner.

Exercise 3.3. A homogeneous stick AB of length 2a is pivotally fixed at point B.
From the end of the stick, the material point D begins to move, the mass of which
is equal to the mass of the stick. At the initial moment, the stick is in a horizontal
position. Having received the push, it begins to rotate clockwise in a vertical plane.
Show that the time T , in which the point D reaches the end A of the stick, is equal to

T = 1

ω
arcsin

2aω2

g
(2 − ln 3) ,

if it moves in such a way that the angular velocity ω of the stick remains constant.

Exercise 3.4. The physical pendulum consists of a homogeneous ball of radius r ,
suspended on a weightless rod to the fulcrum point O. The lower point of the ball
describes a circle of radius R. Another same ball is placed in a circular groove of
radius R and rolls along it without slipping (see Fig. 3.22). At the initial moment the
balls are on the same level and begin to move without initial speed. Show that the ratio
of the highest speeds of the centers of the balls is equal to

v1

v2
=
√

7r2 + 5R2 − 10Rr

7 (R − r)2
.

Show also that with the ratio of

R = 2r

between R and r , these velocities will be the same.

Exercise 3.5. A homogeneous cylinder of radius r and mass m freely rolls from a
stationary cylinder of radius R. The cylinder begins to move from a state of rest as
a result of a small impulse (see Fig. 3.23). The coefficient of sliding friction is equal
to f . Show that:
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Figure 3.22 The physical pendulum, consisting of a homogeneous ball, is suspended on a weightless rod
to the fulcrum point O. Another same ball is in a circular groove and rolls along it.

Figure 3.23 A homogeneous cylinder freely rolling from a stationary cylinder.

• all values of the angle ϕ, at which the rolling occurs without slipping, are given by
the inequality

ϕ < 2 arctan

√

1 + 33f 2 − 1

11f
,

• the corresponding velocities of the center of the cylinder (as a function of ϕ) are

v (ϕ) =
√

4

3
g (R + r) (1 − cosϕ),
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• the normal reaction force N = N(ϕ) is given by

N(ϕ) = mg

3
(7 cosϕ − 4) ,

• the friction force F = F(ϕ) is

F(ϕ) = mg

3
sinϕ.
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The relationships obtained in the previous chapters are based on the consideration that
the absolute reference system is not accelerated. Systems in which this condition is
met are called inertial. In this chapter we analyze the dynamics of non-inertial sys-
tems, that is, systems whose absolute reference undergoes an acceleration. Another
consideration made previously is in relation to the mass; this has been assumed con-
stant. The treatment of some cases in which the mass is variable is the other aspect
of this chapter. The Meshchersky and Tsiolkovsky’s rocket formulas are derived and
analyzed.

4.1 Non-inertial systems

Definition 4.1. A coordinate system that does not experience acceleration is called an
inertial system; otherwise it is called a non-inertial system.

Recall that in a system S of material points, referring to an inertial system, the
following three relationships, discussed in the previous chapter, are satisfied:

(a) the second law of Newton,

Q̇ = Fext ; (4.1)

(b) the Rizal’s theorem,

K̇A = MFext ,A + M [vCI ,vA] ; (4.2)
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(c) the following relationship between the work, developed by the forces acting on
S, and the increase of its kinetic energy:

dT = δA or Ṫ = N. (4.3)

4.1.1 Newton’s second law regarding a relative system

In this subsection we will solve the problem of rewriting Eqs. (4.1)–(4.3) for the case
in which the reference system is non-inertial. To do that, it will be sufficient to rewrite
them with respect to a relative reference system.

From what we observed in Chapter 2, it is known that the acceleration of a
point rabs with respect to an absolute coordinate system can be described in terms
of the acceleration wO , the angular velocity ω, and the acceleration ε of a relative
coordinate system with origin O, namely,

wabs = wtr + wrel + wcor , (4.4)

where the translation wtr and Coriolis wcor accelerations are

wtr := wO + [ε, rrel] + [ω, [ω, rrel]] (4.5)

and

wcor := 2 [ω,vrel] , (4.6)

while rrel , vrel , and wrel represent the relative position, velocity, and acceleration of
the point, and are given by

rrel = xi + yj + zk, vrel = ẋi + ẏj + żk, wrel = ẍi + ÿj + z̈k

(here i, j, k are unitary orths of a non-inertial coordinate system).
Now, it has been seen in Chapter 3 that the inertial center CI of a system S of

material points with constant total mass M satisfies the relation

Q̇ = M r̈CI,abs , (4.7)

where rCI,abs denotes the absolute position of CI . Since

wCI,abs := r̈CI,abs,

expression (4.7) can be represented as

Q̇ = MwCI,abs .

This, in combination with Newton’s second law (4.1), leads to

MwCI,abs = Fext ,
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or, using (4.4),

M
(

wCI,tr + wCI,rel + wCI,cor

) = Fext .

From the last equation it follows that

MwCI,rel = Fext − MwCI,tr − MwCI,cor . (4.8)

Definition 4.2. The vector

RCI,tr := −MwCI,tr (4.9)

is referred to as inertial translation force, and the vector

RCI,cor = −MwCI,cor (4.10)

is called inertial Coriolis force.

The definitions (4.9) and (4.10) allow to obtain the final expression of (4.8), which
is the relative counterpart of the law (4.1) and describes the dynamics of CI with
respect to the relative system:

MwCI,rel = Fext + RCI,tr + RCI,cor . (4.11)

The example that appears next illustrates the usefulness of the expression obtained.

Example 4.1. Consider the inclined plane as in Fig. 4.1, which is subject to the accel-
eration w shown. On the plane there is a body of mass m that slides without friction.
Determine the magnitude of w so that the sliding of the body is towards the high-
est point of the plane. Look at the plane from the relative coordinate system that is
displayed. Since this system is not rotating, in view of (4.5) and (4.6) we have

ω = 0, ε = 0,

Figure 4.1 Body on an accelerated inclined plane.

implying

RCI,tr = −mw, RCI,cor = 0.
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From (4.11), in order for the body to accelerate in the negative direction of the x-axis,
we must have

RCI,tr cosα ≥ mg sinα,

or

mw cosα ≥ mg sinα,

which finally gives

w ≥ g tanα.

4.1.2 Rizal’s theorem in a relative system

Recall (from Chapter 3) that the moment of the impulse of the system S with respect
to pole A is given by

KA :=
∑

i∈S

[

ri,A,mivi,abs

]

,

where ri,A denotes the position of the point i ∈ S, with mass mi , with respect to the
pole A. In this context we can introduce the following definition.

Definition 4.3. Let the particle system S be referenced to a relative system with origin
O. The relative momentum of the impulse of S with respect to pole A is given by

Krel,A :=
∑

i∈S

[

ri,A,mivi,rel

]

,

where vi,rel denotes the velocity of the point i ∈ S relative to O.

In view of this definition we have

K̇rel,A =
∑

i∈S

([

ṙi,A,mivi,rel

] + [

ri,A,mi v̇i,rel

])

, (4.12)

and in particular, if A = O, by (2.45) it follows that

ri,O = ri,rel, ṙi,O = vi,rel, v̇i,rel = wi,rel + 1

2
wi,cor ,

and the relation (4.12) is reduced to

K̇rel := K̇rel,O =
∑

i∈S

[

ri,rel,mi

(

wi,rel + 1

2
wi,cor

)]

(4.13)

since
[

vi,rel,mivi,rel

] = 0. Using (4.4) we have

wi,rel = wi,abs − wi,tr − wi,cor (4.14)
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and hence, (4.13) can be expressed as

K̇rel =
∑

i∈S

[

ri,rel,miwi,abs

] +
∑

i∈S

[

ri,rel,−miwi,tr

]

+
∑

i∈S

[

ri,rel,−1

2
miwi,cor

]

.

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(4.15)

Define for the particle i ∈ S the inertial translation force as

Ri,tr := −miwi,tr = −mi

(

wO + [

ε, ri,rel

] + [

ω,
[

ω, ri,rel

]])

(4.16)

and the inertial Coriolis force as

Ri,cor = −1

2
miwi,cor = −mi

[

ω,vi,rel

]

. (4.17)

Here we have used that wi,cor := 2
[

ω,vi,rel

]

. Since by Newton’s second law

miwi,abs = Fi , (4.18)

with Fi as the total force acting on the particle i ∈ S, expression (4.15) takes the form

K̇rel =
∑

i∈S

[

ri,rel,Fi

] +
∑

i∈S

[

ri,rel,Ri,tr

] +
∑

i∈S

[

ri,rel,Ri,cor

]

. (4.19)

Recall (also from Chapter 3) that the moment of the external forces with respect to the
origin O is given by

MFext ,O :=
∑

i∈S

[

ri,rel,Fi,ext

] =
∑

i∈S

[

ri,rel,Fi

]

.

Defining the moments Mtr,O and Mcor,O of the inertial translation forces and the
inertial Coriolis forces with respect to the origin O as

Mtr,O :=
∑

i∈S

[

ri,rel,Ri,tr

]

and Mcor,O :=
∑

i∈S

[

ri,rel,Ri,cor

]

,

respectively, we arrive at the final expression for the relative counterpart of (4.2), that
is, the law that governs the dynamics of the relative momentum of the impulse:

K̇rel = MFext ,O + Mtr,O + Mcor,O. (4.20)

Expression (4.20) takes simple forms in some particular cases.

a) For example, if

vi,rel = 0 ∀i ∈ S,
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then

Ri,cor = −2mi

[

ω,vi,rel

] = 0, Mcor,O :=
∑

i∈S

mi

[

ri,rel,Ri,cor

] = 0,

and hence,

K̇rel = MFext ,O + Mtr,O. (4.21)

b) Another simplification occurs if the relative system does not rotate, that is,

ω ≡ 0.

In this case (4.16) has the reduced form

Ri,tr = −miwO,

so that

Mtr,O =
∑

i∈S

[

ri,rel,−miwO

] =
[

−
∑

i∈S

miri,rel,wO

]

= [

rCI,rel,−MwO

]

,

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.22)

where the definition of the inertial center has been used.

The example below uses the newly obtained results, in particular expression (4.22).

Example 4.2. Fig. 4.2 shows a sphere, of radius ρ and mass m uniformly distributed,
resting against a step of height h < ρ. Determine the magnitude of the horizontal
acceleration w that the “floor” must have for the sphere to climb the step. Look at the
sphere in a relative coordinate system with origin O at the point around which the
rotation of the sphere is to be verified. Since the coordinate system moves with the
solid, it is true that vi,rel = 0 ∀i ∈ S. So, formula (4.22) is applicable. In view of the
fact that in the limit case we have

ε = 0, ω = 0,

Figure 4.2 Sphere against a step.



Non-inertial and variable-mass systems 137

by (4.22) we have

Mtr,O = [

rCI,rel,−mw
]

.

Moreover, the reaction of the top point of the step on the sphere has null moment.
Therefore,

MFext ,O =
∑

i∈S

[

ri,rel,mig
] =

[

1

m

∑

i∈S

miri,rel,mg

]

= [

rCI,rel,mg
]

.

The limit condition is given by

Mtr,O = MFext ,O,

that is to say,

w (ρ − h) = g

√

ρ2 − (ρ − h)2,

and the sphere goes up when

w > g

√
(

ρ

ρ − h

)2

− 1.

4.1.3 Kinetic energy and work in a relative system

From what we observed in Chapter 3, the kinetic energy of a system of material points
S referenced to an absolute system is given by

T := 1

2

∑

i∈S

mi

(

vi,abs,vi,abs

)

,

where vi,abs represents the velocity of the point i ∈ S with mass mi with respect to the
absolute system. Likewise, in the same Chapter 3 the amount

Trel,O := 1

2

∑

i∈S

mi

(

vi,O,vi,O

)

, (4.23)

where O is the origin of a relative system and vi,O is the velocity of i ∈ S relative to
O, was called the kinetic energy of S relative to O. For clarity of the notation, in what
follows Trel,O will be denoted simply Trel and will be called relative kinetic energy,
while vi,O will be denoted vi,rel , whereupon (4.23) adopts the expression

Trel := 1

2

∑

i∈S

mi

(

vi,rel,vi,rel

)

. (4.24)
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Taking into account the expression for the differential of an internal product
in (4.24) and the consideration that mi is constant we have

dTrel =
∑

i∈S

mi

(

v̇i,reldt,vi,rel

) =
∑

i∈S

mi

(

v̇i,rel,vi,reldt
)

,

where using the relations (2.45)

v̇i,rel = wi,rel + 1

2
wi,cor , vi,reldt = dri,rel,

with ri,rel denoting the position of the point i ∈ S with respect to the relative system,
we arrive at

dTrel =
∑

i∈S

(

miwi,rel, dri,rel

) + 1

2

∑

i∈S

(

miwi,cor , dri,rel

)

.

Now using the alternative expression (4.5) of wi,rel , we then have

dTrel =
∑

i∈S

(

miwi,abs, dri,rel

) +
∑

i∈S

(−miwi,tr , dri,rel

)+
∑

i∈S

(−miwi,cor , dri,rel

) + 1

2

∑

i∈S

(

miwi,cor , dri,rel

) =
∑

i∈S

(

miwi,abs, dri,rel

) −
∑

i∈S

(

miwi,tr , dri,rel

) − 1

2

∑

i∈S

(

miwi,cor , dri,rel

)

.

And considering now the definitions of the translatory and inertial Coriolis forces as
well as Newton’s second law (4.16)–(4.18) we find

dTrel =
∑

i∈S

(

Fi , dri,rel

) +
∑

i∈S

(

Ri,tr , dri,rel

) +
∑

i∈S

(

Ri,cor , dri,rel

)

,

where

Fi = miwi,abs, Ri,tr = −miwi,tr , Ri,cor = −1

2
miwi,cor = − [

ω,vi,rel

]

.

Finally, remembering the concept of elementary work of a force on a trajectory, we
have as the final expression for the relative counterpart of (4.3)

dTrel = δA + δAtr + δAcor , (4.25)

with

δA :=
∑

i∈S

(

Fi , dri,rel

)

, δAtr :=
∑

i∈S

(

Ri,tr , dri,rel

)

,

δAcor :=
∑

i∈S

(

Ri,cor , dri,rel

)

.

⎫

⎪⎪⎬

⎪⎪⎭

(4.26)
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However, there is an interesting simplification of (4.26).

Lemma 4.1. We have

δAcor = 0, ∀t ≥ 0,

which means that the Coriolis forces (normal ones as well as inertial) do not produce
any work.

Proof. In view of (4.26) it follows that

δAcor = −
∑

i∈S

(

mi

[

ω,vi,rel

]

, dri,rel

)

,

and taking into account that

dri,rel = vi,reldt,

we get

δAcor = −
∑

i∈S

(

mi

[

ω,vi,rel

]

,vi,rel

)

dt = 0

by the existing orthogonality of
[

ω,vi,rel

]

and vi,rel .

In view of this fact the final expression (4.25) looks as

dTrel = δA + δAtr . (4.27)

4.1.4 Some examples dealing with non-inertial systems

Some aspects of the results obtained in the previous developments are illustrated in
the exercises that are now presented.

Example 4.3. Assume that a ring with the radius ρ, shown in Fig. 4.3, is rotating with
angular velocity ω about the indicated axis. The distance between the axis of rotation
and the center of the ring is a > ρ. A small ring of mass m surrounds the wire that
forms the ring, being able to slide on it without friction. We need to find the value of ω

such that the moving small ring maintains the angle ϕ0 with respect to the vertical line.
The answer can be achieved by expression (4.11). To do this, the relative coordinate
system shown is fixed to the ring. In these conditions, since the ring is small, we have

rCI,rel = vCI,rel = wCI,rel = 0.

Moreover

wO = wCI,abs,
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Figure 4.3 Ring in rotation with a small ring.

whereby

RCI,tr = −mwCI,abs, RCI,cor = 0.

So, the expression to be considered is reduced to

Fext − mwCI,abs = 0. (4.28)

We also have

Fext = R + mg,

where R denotes the action of the small ring on the ring, which, in view of the absence
of friction and considering that the small ring does not move with respect to the main
ring, has a radial direction. It is also known (Chapter 2) that the speed of the ring has
magnitude

v = ωh with h := a + ρ sinϕ0. (4.29)

Then, from the observations in (4.29),

wCI,abs = −v2

h
i = −ω2hi.

So, from (4.28)

mω2h − R sinϕ0 = 0, −mg + R cosϕ0 = 0,

which gives

ω2h

g
= tanϕ0,

and with the value of h, given in (4.29) and which is positive, it follows that

ω =
√

g tanϕ0

a + ρ sinϕ0
.
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Example 4.4. Consider the series of n articulated bars in Fig. 4.4. Each bar has
length l and mass m. The upper fixed point experiences an acceleration w. Calcu-
late the angles that the bars form with the vertical one when all the bars have reached
the acceleration w. The force diagram of the k-th bar in the state in which all the bars
have the acceleration w, and therefore do not rotate, is shown in Fig. 4.5. In this dia-
gram, a relative system originating in O is fixed to the bar. The force Rk represents the
action exerted by the previous bar, while the forces − (n − k)mw and (n − k)mg de-
note the components of the traction exerted by the next bar. Since the relative system
has ε = ω = 0, the expression to be used is (4.21) with K̇rel = 0. In this case

MFext ,O + Mtr,O = 0. (4.30)

Figure 4.4 Accelerated series of articulated bars.

Figure 4.5 Diagram of forces on a bar.

Proceeding to calculate the terms of (4.30), we get

MFext ,O :=
∑

i∈S

[

ri,rel,Fi,ext

] =
∑

i∈S

[

ri,rel,mig
] + (n − k)ml (−g sinϕk + w cosϕk)k,

where

∑

i∈S

[

ri,rel,mig
] = [

rCI,rel,mg
] = −1

2
mgl sinϕkk.
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Therefore

MFext ,O = ml

[

−1

2
g sinϕk + (n − k) (−g sinϕk + w cosϕk)

]

k (4.31)

and

Mtr,O =
∑

i∈S

[

ri,rel,−miw
] = [

rCI,rel,−mw
] = 1

2
mwl cosϕkk. (4.32)

Substitution of (4.31) and (4.32) into (4.30) leads, finally, to the following conclusion:

tanϕk = w

g
, k = 1, ..., n,

which means that all angles are equal.

4.2 Dynamics of systems with variable mass

This section deals with a problem different from that of the previous section: it is
considered that the mass of the systems is not constant, which will generalize some
dynamic relationships obtained in Chapter 3. In this section no more relative systems
are considered, so the quantities are with respect to an absolute system.

4.2.1 Reactive forces and the Meshchersky equation

Recall that in a system S of material points, Newton’s second law has the expression

Q̇ = Fext , (4.33)

where the impulse Q of the system S is calculated as

Q =
∑

i∈S

mivi ,

so that

Q̇ = d

dt

∑

i∈S

mivi

or, using the fact that the velocity of the center of inertia is given by

vCI = 1

M

∑

i∈S

mivi ,
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where M is the total mass of S. In the case when M is allowed to be variable we arrive
at the following dynamic equation:

Q̇ = d

dt
(MvCI ) = ṀvCI + M v̇CI . (4.34)

If a reactive force is defined as

Freac := −ṀvCI = − sign
(

Ṁ
)

μvCI , (4.35)

where

μ := ∣
∣Ṁ

∣
∣

is referred to as expenditure, the Newton’s second law (4.33) allows to rewrite (4.34)
as

M v̇CI = Fext + Freac. (4.36)

The relationship (4.36) is called the Meshchersky equation.1

The examples and exercises that follow illustrate several interesting cases of the
dynamics of variable-mass systems.

4.2.2 Tsiolkovsky’s rocket formula and other examples

Example 4.5. Consider the mobile tank shown in Fig. 4.6. The container has a hole
through which its contents leak and the system is not subject to external forces. Con-
sidering that the expenditure is constant over time, we will try to determine the law
that follows the speed of the mobile. In view of the fact that the mass of the system is
decreasing, the law (4.36) adopts the simplified form

M(t)v̇CI (t) = μvCI (t). (4.37)

Figure 4.6 Tank with drain.

Since the expense is constant, we have

M(t) = M(0) − μt,

1 It was obtained by I.V. Meshchersky in 1897 for a variable-mass body of the material points.
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so (4.37) is expressed as

dvCI

vCI

= μ

M(0) − μt
dt,

whose integration with respect to time leads to

ln
vCI (t)

vCI (0)
= − ln

M(0) − μt

M(0)

or, equivalently, to

vCI (t) = vCI (0)
1

1 − μ

M(0)
t
,

valid for any 0 ≤ t ≤ M(0)

μ
.

Example 4.6. Fig. 4.7 shows a rocket from which mass with a relative velocity u
emerges. Let us try to find the expression for the speed of the rocket. Recall that the
general impulse of the system at time t is given by

Q (t) = M (t)v (t) ,

Figure 4.7 Rocket shedding mass.

whereas at time t + �t , at which the mass quantity �M (t) has the additional speed
u (t), it is

Q (t + �t) = M (t) [v (t) + �v (t)] + �M (t)u (t) ,

from which it follows that

Q (t + �t) − Q (t)

�t
= M (t)

�v (t)

�t
+ �M (t)

�t
u (t) .

If �t → 0, by the definition of derivative, we obtain

Q̇ = M (t) v̇ (t) + Ṁ (t)u (t) ,

where, by the Newton’s second law (4.33) Q̇ = Fext , the following relationship fol-
lows:

M (t) v̇ (t) + Ṁ (t)u (t) = Fext . (4.38)
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In the particular case where Fext ≡ 0 and u is collinear with v (0), Eq. (4.38) is reduced
to

v̇ (t) = −u (t)
Ṁ (t)

M (t)
. (4.39)

Note that here Ṁ (t) is negative, since the mass of the rocket is decreasing in time.
If in addition the magnitude of u is constant, the integration of (4.39) leads to the
expression

v (t) = v (0) + u ln
M (0)

M (t)
, (4.40)

which is known as the Tsiolkovsky rocket formula.2

The Tsiolkovsky rocket equation (4.39), classical rocket equation, or ideal rocket
equation is a mathematical equation that describes the motion of vehicles that follow
the basic principle of a rocket: a device that can apply acceleration to itself using
thrust by expelling part of its mass with high velocity can thereby move due to the
conservation of momentum.3

Example 4.7. In Fig. 4.8 a rocket is shown with n fuel tanks, each of which contains a
mass m0, in addition to a capsule of mass m. Assuming that u is the relative speed with
which the combustion gases are released and supposing that the rocket starts from a
given level with the velocity v(0) = 0 and that v∗ is the speed that is required to be
reached by the capsule, we need to calculate the number n of tanks required. This
problem can be resolved with the formula of Tsiolkovsky (4.40). To do that, note that

v(0) = 0, M(0) = nm0 + m.

Figure 4.8 Rocket with n fuel tanks.

2 Konstantin Eduardovich Tsiolkovsky (September 17, 1857–September 19, 1935) was a Russian rocket
scientist and pioneer of the astronautic theory. Along with the French Robert Esnault-Pelterie, the German
Hermann Oberth, and the American Robert H. Goddard, he is considered to be one of the founding fathers
of modern rocketry and astronautics. His works later inspired leading Soviet rocket engineers such as
Sergei Korolev and Valentin Glushko and contributed to the success of the Soviet space program.

3 The equation is named after Russian scientist Konstantin Tsiolkovsky, who independently derived it and
published it in his 1903 work. The equation had been derived earlier by the British mathematician William
Moore in 1810, and later published in a separate book in 1813. The minister William Leitch, who was a
capable scientist, also independently derived the fundamentals of rocketry in 1861.

While the derivation of the rocket equation is a straightforward calculus exercise, Tsiolkovsky is
honored as being the first to apply it to the question of whether rockets could achieve speeds necessary
for space travel.

Robert Goddard in America independently developed the equation in 1912 when he began his research
to improve rocket engines for possible space flight. Hermann Oberth in Europe independently derived the
equation about 1920 as he studied the feasibility of space travel.
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If we denoted by M̄ (t) the amount of fuel mass, consumed up to time t , we obtain the
expression

M (t) = nm0 + m − M̄ (t) .

So, from formula (4.40) it follows that

v(t) = u ln
nm0 + m

nm0 + m − M̄ (t)
. (4.41)

Now, at the moment t∗ when v(t) = v∗, the mass consumed should be equal to

M̄
(

t∗
) = nm0.

Hence by (4.41) we get

v∗ = u ln
nm0 + m

m
,

from which it follows that

n = m

m0

[

exp

(
v∗

u

)

− 1

]

.

Since n can only take integer values we may conclude that

n = int

{
m

m0

[

exp

(
v∗

u

)

− 1

]}

+ 1 ,

where int {·} denotes the “integer part” function.

Example 4.8. The container in Fig. 4.9 is a hollow cylinder of radius ρ that can rotate
about the vertical axis. In addition to the possible external forces, the content of the
cylinder is leaking tangentially with a relative speed of magnitude u(t). Consequently,
an action that rotates the container is exerted. Let us determine the expression that
governs the dynamics of angular velocity.

From Section 3.2 of Chapter 3, it is known that for the considered configuration of
the problem the impulse moment Kω (t) at time t is given by

Kω (t) = Iω (t)ω (t) , (4.42)

whereas for the instant t + �t , with �t > 0, in which the mass �M (t) has come out,
the impulse moment Kω(t + �t) is

Kω(t + �t) = Iω (t) [ω (t) + �ω(t)] + ρ�M (t)u (t) , (4.43)

so, by (4.42) and (4.43) it follows that

Kω (t + �t) − Kω (t)

�t
= Iω (t)

�ω (t)

�t
+ ρu (t)

�M

�t
.
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Figure 4.9 Cylinder driven by the tangential leakage of its contents.

If �t tends to zero, by the definition of the corresponding derivatives,

Ṁ (t) := lim
�t→0

�M (t)

�t

implies

K̇ω (t) = Iω (t) ω̇ (t) + ρu (t) Ṁ. (4.44)

Now, considering the relationship

K̇ω (t) = (

MFext,O
, eOO ′

)

,

where MFext,O
represents the moment of the external forces with respect to the point

O and eOO ′ denotes a unit vector in the direction O to O ′, expression (4.44) adopts
the final expression

Iω (t) ω̇ (t) = (

MFext,O
, eOO ′

) − ρuṀ. (4.45)

In our case the problem on the container in Fig. 4.9 has as conditions

ω (0) = 0, u = const
t

, Fext ≡ 0, h (0) = h0,
∣
∣Ṁ

∣
∣ = μ = const

t
, (4.46)

where h(t) represents the height of the content at time t . Let us obtain the expression
of

ω = ω (t) and ω = ω (h) .

From (4.45) and considering the conditions (4.46) we have

Iω (t) ω̇ (t) = −ρuṀ,
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whose integration is reached:

ω (t) = −ρu

∫ t

0

dM

Iω (t)
.

But recall from Chapter 3 that

Iω (t) = 1

2
M (t)ρ2,

which leads to

ω (t) = 2
u

ρ
ln

M (0)

M (t)
. (4.47)

If we denote by δ the density of the content of the container, we have the following
relationships:

M (0) = δπρ2h0, M (t) = πδρ2h(t) . (4.48)

This allows to rewrite (4.47) in the form

ω (t) = 2
u

ρ
ln

h0

h(t)
, (4.49)

which represents one of the requested dependences:

ω (h) = 2
u

ρ
ln

h0

h
.

Also from (4.48) we have

Ṁ (t) = πδρ2ḣ (t) ,

so that

ḣ (t) = Ṁ (t)

πδρ2 , (4.50)

and considering that the expenditure μ := ∣
∣Ṁ (t)

∣
∣ is constant and Ṁ (t) = −μ ≤ 0,

integration of (4.50) gives

h(t) = h0 − μ

πδρ2
t. (4.51)

Finally, substituting (4.51) in (4.49) yields the other sought expression:

ω (t) = 2
u

ρ
ln

h0

h0 − μ

πδρ2 t
.
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The example that follows is interesting because a very important differential equa-
tion (namely, Bernoulli’s equation) appears in the solution process.

Example 4.9 (Kelly problem). Suppose that one end of the chain in Fig. 4.10 is
falling. We will try to determine the law that governs the length x (t) of the segment
that is in the vacuum (no friction appears), considering as initial conditions

x (0) = ẋ (0) = 0.

Figure 4.10 Chain with one end falling.

If the constant γ represents the mass per unit length of the chain, by Newton’s
second law (4.33), applied to the segment, we have

d

dt
(γ xẋ) = γ xg,

from which it follows that

ẋ2 + xẍ = xg. (4.52)

The nonlinear differential equation that is obtained is called the Bernoulli equation.
To solve Eq. (4.52), note that the velocity ẋ is a function of x, and then, with the
notation

ẋ = v (x) , (4.53)

by temporary derivation we get

ẍ = d

dt
v (x) = d

dx
v (x) ẋ = v′ (x) v (x) , (4.54)

where v′ denotes the derivative of v with respect to its argument x. Note now that

v′ (x) v (x) = 1

2

d

dx
v2 (x) . (4.55)

So, the relationships (4.53)–(4.55) allow to rewrite (4.52) as

v2 (x) + 1

2
x

d

dx
v2 (x) = xg,
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or, with the change of variable

u (x) = v2 (x) ,

as

u (x) + 1

2
xu′ (x) = xg. (4.56)

If for u (x) we propose the form

u (x) = kx, k = const
x

, x ≥ 0,

its derivative with respect to x is

u′ (x) = k,

and consequently (4.56) is represented as

kx + 1

2
xk = xg,

from which it follows that

k = 2

3
g,

and therefore

v2 (x) = u (x) = 2

3
gx,

or, by (4.53),

ẋ2 = 2

3
gx,

implying

ẋ =
√

2

3
g
√

x.

Separating variables, it can be represented as

dx√
x

=
√

2

3
gdt,

whose integration, given that x (0) = 0, leads to

2
√

x =
√

2

3
gt,
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or finally,

x (t) = gt2

6
. (4.57)

Expression (4.57) is referred to as the Kelly formula.

4.3 Exercises

Exercise 4.1. A homogeneous disk can roll without sliding along the horizontal di-
rectional axis Ox, rotating with a constant angular velocity ω around the vertical axis
of Oy. Show that the law of relative motion of the disk is described by the equation

3ẍ (t) = 2ωx (t) ,

and its dynamics may be expressed as

x (t) = C1e
λt + C2e

−λt ,

where C1, C2 are constants depending on the initial values x (0), ẋ (0) and

λ =
√

6

3
ω.

Exercise 4.2. A mine has been dug in the Earth, the direction of which at each point
coincides with the direction of the plumb at this point. Show that the shape of the mine
is given by the formula

x = ayγ , 0 < γ ≤ 1,

if the Earth is considered a homogeneous rotating ball.

Exercise 4.3. A thin flexible inextensible ABC thread is laid in a vertical smooth pipe
of a sufficiently small diameter. The ends A and C are fixed, and point B occupies the
lowest position, with BC = s0 (see Fig. 4.11). At some moment, the end C is released
without initial velocity. Show that the dependence of the speed v of the moving part
of the thread on its length s is described by the formula

v (s) = 2

3s

√

3g
(

s3
0 − s3

)

.

Find also the time it takes for the thread to fully straighten.

Exercise 4.4. The jet vessel is driven by a pump that draws water of density ρ

through the inlet of the horizontal channel and throws it in the opposite direction (see
Fig. 4.12). The relative velocity of the water at the inlet is u. The area of the inlet and
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Figure 4.11 A thin flexible inextensible thread in a vertical smooth pipe.

Figure 4.12 A jet vessel driven by a pump.

outlet is S and S/κ (κ > 1), respectively. The mass of the vessel with the water in it
is equal to m. Show that the acceleration time of the vessel from speed v0 to v1 is

taccel = mp

2k
ln

(
1 + pv1

1 − pv1
· 1 − pv0

1 + pv0

)

,

where

p = 1

u

√

k

ρS (κ − 1)
,

assuming that it is affected by the force Fres of water resistance proportional to the
square of the speed, namely,

Fres = −kv2.

Exercise 4.5. Show that the impulse of a rocket, which moves linearly in the absence
of external forces, reaches its maximum value at a time when the rocket velocity v

becomes equal to the velocity of the gas u, which is assumed to be constant.
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In this chapter we continue with the study of the dynamics of solids. The dynamic
equations corresponding to the rotation of bodies are obtained. They are called Eu-
ler’s dynamic equations. For this purpose, a fundamental concept of the geometry
of solids is introduced, namely, the inertia tensor, which is key in the description of
the equations sought. The inertial tensor will allow calculating fundamental quantities
such as kinetic energy and impulse moment with reduced expressions. In the central
part of the chapter the proposed objective is achieved, once some main properties of
the inertia tensor have been stated. The chapter concludes with the application (not
trivial, but very productive) of Euler’s dynamic equations to the study of special sys-
tems such as the gyroscope and considers in detail arising dynamic reactions. Several
examples and exercises illustrate the presented theory.

5.1 Tensor of inertia

Consider a rigid body shown in Fig. 5.1. It is desired to calculate the moment of inertia
of that body with respect to the axis with direction given by the unit vector e. With
reference to Fig. 5.1 the moment of inertia is given by

Ie :=
∑

i∈S

mih
2
i , (5.1)

where

h2
i = r2

i − (OPi)
2 (5.2)
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Figure 5.1 Solid body and a generic axis.

with

OPi = (e, ri ) . (5.3)

Considering that

ri = (xi yi zi

)ᵀ

and

e = (α β γ
)ᵀ

,

(5.3) can be represented as

OPi = αxi + βyi + γ zi .

Therefore expression (5.2) becomes

h2
i = x2

i + y2
i + z2

i − (αxi + βyi + γ zi)
2 =

x2
i + y2

i + z2
i − α2x2

i − β2y2
i − γ 2z2

i − 2αβxiyi − 2αγ xizi − 2βγyizi .

Taking into account that

α2 + β2 + γ 2 = 1,

it follows that

h2
i = α2(y2

i + z2
i ) + β2(x2

i + z2
i ) + γ 2(x2

i + y2
i )

−2αβxiyi − 2αγ xizi − 2βγyizi .
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Substitution of this last expression into (5.1) gives

Ie = α2
∑

i∈S

mi(y
2
i + z2

i ) + β2
∑

i∈S

mi(x
2
i + z2

i ) + γ 2
∑

i∈S

mi(x
2
i + y2

i )

− 2αβ
∑

i∈S

mixiyi − 2αγ
∑

i∈S

mixizi − 2βγ
∑

i∈S

miyizi .

⎫

⎪⎪⎬

⎪⎪⎭

(5.4)

Definition 5.1. The amounts

Ixx :=
∑

i∈S

mi(y
2
i + z2

i ),

Iyy :=
∑

i∈S

mi(x
2
i + z2

i ),

Izz :=
∑

i∈S

mi(x
2
i + y2

i )

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

are called principal moments of inertia, while

Ixy :=
∑

i∈S

mixiyi,

Ixz :=
∑

i∈S

mixizi,

Iyz :=
∑

i∈S

miyizi

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

are called centrifugal moments, both with respect to the corresponding axes.

The previous definitions (5.5) and (5.6) allow expressing (5.4) as

Ie = α2Ixx + β2Iyy + γ 2Izz − 2αβIxy − 2αγ Ixz − 2βγ Iyz,

or, as can easily be verified,

Ie = (e, Ie) , (5.7)

where the matrix I is defined as follows:

I :=
⎡

⎣

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

⎤

⎦ . (5.8)

Remark 5.1. Because

Ixz = Ixz, Ixy = Iyx, Iyz = Izy,

the matrix I is symmetric, i.e.,

I = I
T .
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Definition 5.2. Matrix I is called the inertial tensor (or tensor of inertia) of the solid
body given with respect to the coordinate system considered.

The inertia tensor is a very useful element to describe the most important me-
chanical concepts of solid bodies, such as kinetic energy and momentum, which are
developed in what follows for certain common cases.

5.2 Relative kinetic energy and impulse momentum

5.2.1 Relative kinetic energy

This section uses the nomenclature and the results obtained in Section 3.6 of Chap-
ter 3. This section is based on the König theorem, namely, the total kinetic energy
Ttotal of a rigid body is calculated as

Ttotal = TO ′ + Trel,O ′ + M
(

vO ′ ,vCI,O ′
)

,

where, if it is a rigid body rotating with angular velocity ω relative to the pivot O ′, we
have

Trel,O ′ = 1

2
Iωω2, (5.9)

with Iω denoting the moment of inertia of the body with respect to the line of action
of ω. Then, using (5.7), we get

Trel,O ′ = 1

2
(eω, Ieω)ω2,

where I refers to a coordinate system with origin O ′. So, we have the following result.

Lemma 5.1. In the conditions stated

Trel,O ′ = 1

2
ωT

Iω. (5.10)

Proof. Since

ω = ωeω

it follows that

Trel,O ′ = 1

2
(eω, Ieω)ω2 = 1

2
((ωeω) , I (ωeω)) = 1

2
ωT

Iω.

Remark 5.2. Note that the tensor of inertia I does not depend on the direction eω of
the angular velocity vector ω. This fact simplifies the expression for Ṫrel,O ′ , namely,
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a) using (5.9) we have

Ṫrel,O ′ = Iωωω̇ + ω2

2

d

dt
Iω,

b) and using (5.10) we have

Trel,O ′ = ωT
Iω̇,

which does not require to calculate
d

dt
Iω.

5.2.2 Relative impulse momentum

On the other hand, by the Euler’s theorem for any generic point i in the rigid body S

its relative velocity is equal to

vi,O ′ = [ω, ri,O ′
]

,

where ri,O ′ and vi,O ′ denote the position and velocity of i ∈ S with respect to the
origin O ′. Since the impulse moment relative to O ′ is defined as

Krel,O ′ :=
∑

i∈S

[

ri,O ′ ,mivi,O ′
]

we may conclude that

Krel,O ′ =
∑

i∈S

[

ri,O ′ ,mi

[

ω, ri,O ′
]]

.

Using the relation

[a, [b, c]] = (a, c)b − (a,b) c,

we get

Krel,O ′ =
∑

i∈S

mi

[(

ri,O ′ , ri,O ′
)

ω − (ri,O ′ ,ω
)

ri,O ′
]=

∑

i∈S

mi(x
2
i + y2

i + z2
i )ω −

∑

i∈S

mi(xiωx + yiωy + ziωz)ri ,

from which it is easily verified that

Krel,O ′x = ωxIxx − ωyIxy − ωzIxz,

Krel,O ′y = −ωxIxy + ωyIyy − ωzIyz,

Krel,O ′z = −ωxIzx − ωyIzy + ωzIzz.

⎫

⎪⎬

⎪⎭

(5.11)

From these relations and from (5.8) we have the result that follows.
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Lemma 5.2. The following representations hold:

Krel,O ′ = Iω (5.12)

and

Trel,O ′ = 1

2
ωT Krel,O ′ . (5.13)

Proof. This lemma directly follows from (5.12) and (5.10).

Remark 5.3. When the origins O ′ (relative and possibly mobile) and O (absolute
and fixed) coincide, the quantities Krel,O ′ and Trel,O ′ will be denoted simply as KO

and TO .

5.3 Some properties of inertial tensors

Several properties characterize I and its revision is the subject of this section.

5.3.1 Tensor of inertia as a non-negative symmetric matrix

Definition 5.3. A symmetric matrix M ∈ �n×n with the property

xT Mx ≥ 0, ∀x ∈ Rn

it is said to be a positive semi-definite matrix, which is denoted as

M ≥ 0.

Proposition 5.1. Since Ie ≥ 0, from (5.7) it follows that a symmetric matrix I can be
an inertia tensor if and only if

I ≥ 0.

The following criterion allows to establish if a matrix is positive semi-definite.

Lemma 5.3 (Silvester). A symmetric matrix is positive semi-definite if and only if its
main minors are non-negative.

The proof can be found, for example, in (Poznyak, 2008, Theorem 7.2).
The previous criterion trivially leads to the statement that follows.

Lemma 5.4. For the symmetric matrix

I =
⎡

⎢
⎣

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

⎤

⎥
⎦

to be a tensor of inertia, it must meet the following properties:
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1.

Ixx ≥ 0,

2.

IxxIyy ≥ I2
xy,

from where it follows that

Iyy ≥ 0,

3.

IxxIyyIzz ≥ 2IxyIyzIzx + IyyI2
xz + IxxI2

yz + IzzI2
xy.

Example 5.1. Let the matrix G be given as

G =
⎡

⎣

1 −d 0
−d 2 0
0 0 3

⎤

⎦ .

What should be the value of d such that the matrix G is an inertial tensor? Clearly the
first major minor is positive. The non-negativity condition for the second one gives

2 ≥ d2.

The condition on the third major minor does not provide any extra relationship. So,
the solution is

−√
2 ≤ d ≤ √

2.

5.3.2 Eigenvalues and eigenvectors of inertial tensors

The following problem allows to obtain important conclusions concerning I.

Problem 5.1. Let us consider a solid body referring to a coordinate system as shown
in Fig. 5.1. Calculate the minimum and maximum moments of inertia and obtain the
corresponding directions, that is, determine the extremes of the function

Ie = eT
Ie → extr

e∈R3
(5.14)

with the restriction

‖e‖ = 1. (5.15)
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Before addressing the solution to the proposed problem, recall the Lagrange multi-
pliers approach to deal with this type of optimization problems.

Let f : Rn → R and g : Rn → Rm, m ≤ n, be continuously differentiable functions.
Suppose we want to find the points x ∈ Rn in which the function f reaches its extreme
values and also meeting the condition

g (x) = 0.

Definition 5.4. If the point x0 ∈ Rn is such that the Jacobian matrix
∂g
∂x

(x0) has a

range m, it is said to be a regular point of g.

From the theory of constraint optimization (see for example Poznyak (2008)), if
x0 ∈ Rn is a regular point of g and at that point f has an extremum (maximum or
minimum), then the function L (x,λ), called Lagrangian and defined as

L (x,λ) := f (x) − (λ,g (x)) ,

also has a global (non-constraint) extreme at x0 for some vector λ = λ0 ∈ Rm which is
called the Lagrange multipliers vector. Both variables x0 and λ0 satisfy the extremum
condition

∇xL (x0,λ0) = 0, (5.16)

from which we get

x0 = x0 (λ0) ,

and λ0 is calculated via the restriction

g (x0 (λ0)) = 0.

Now we can enunciate the following result.

Lemma 5.5. Extremal directions e satisfy the relationship

Ie = λe (5.17)

while the corresponding extremal moments of inertia are given by the corresponding
values of the parameter λi (i = 1,2,3).

Proof. Applying the described method to the optimization problem (5.14)–(5.15)
with

x = e, f (e) = eT
Ie, g (e) = ‖e‖2 − 1 = 0

yields (with λ ∈ R)

L(e, λ) = eT
Ie − λ(eT e − 1),
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so that in view of (5.16) it follows that

�eL(e, λ) = 2 (Ie − λe) = 0,

which leads to (5.17). With this result it follows that in these same directions

Ie = eT
Ie = λeT e = λ, since eT e = 1.

Remark 5.4. From the previous lemma it is concluded that the extreme directions are
determined by the eigenvectors ei of the inertia tensor, while the corresponding values
of the moments of inertia are given by the associated eigenvalues λi (i = 1,2,3).

Example 5.2. Find the extreme moments of inertia Imax and Imin and the extreme
directions emax and emin corresponding to the inertial tensor

I =
⎡

⎣

3 −1 0
−1 2 0
0 0 1

⎤

⎦ .

The eigenvalues of I are given by the roots of the associated characteristic polynomial
of I with respect to λ, i.e.,

det (I− λI3×3) = 0, (5.18)

where I3×3 denotes the identity matrix of order 3. Substituting I in (5.18) gives

det

⎡

⎣

3 − λ −1 0
−1 2 − λ 0
0 0 1 − λ

⎤

⎦= (1 − λ) [(3 − λ)(2 − λ) − 1] = 0,

whose roots are

λmin = Imin = 1, λ2 = 1

2

(

5 − √
5
)

, λmax = Imax = 1

2

(

5 + √
5
)

.

Now, the extreme directions may be determined from the relation

(I− λI) e = 0.

Consider first λmin = 1. We must have

⎡

⎣

2 −1 0
−1 1 0
0 0 0

⎤

⎦

⎡

⎣

ex

ey

ez

⎤

⎦= 0,
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or equivalently,

2ex − ey = 0,

− ex + ey = 0,

ez any,

⎫

⎪⎬

⎪⎭

from which it follows (since ‖emax‖ = 1) that

emin = [0 0 1
]ᵀ

.

For λmax = 1
2

(

5 + √
5
)

it follows that

⎡

⎣

3 − λmax −1 0
−1 2 − λmax 0
0 0 1 − λmax

⎤

⎦

⎡

⎣

ex

ey

ez

⎤

⎦= 0,

and hence,

ey = (3 − λmax) ex,

ex = (2 − λmax) ey,

ez = 0.

⎫

⎪⎬

⎪⎭

(5.19)

The first two equations in (5.19) are linearly independent, but by the condition
‖emax‖ = 1 we have

e2
x + e2

y =
[

1 + (3 − λmax)
2
]

e2
x = 1,

so that

emax = 1
√

1 + (3 − λmax)2

[

1 (3 − λmax) 0
]ᵀ

.

Definition 5.5. If the origin of the reference coordinate system coincides with the
center of inertia, the main moments of inertia are called central moments of inertia.

Remark 5.5. If, in addition to the condition of the previous definition, the axes of the
system are selected according to the extreme directions, one in the direction of emax,
another in the direction of emin, and the third orthogonal to both, then the tensor of
inertia adopts the reduced form

I =
⎡

⎣

Ixx 0 0
0 Iyy 0
0 0 Izz

⎤

⎦ . (5.20)
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5.3.3 Examples using tensors of inertia

The examples and exercises that make up this section illustrate and complement the
theory of the chapter presented so far.

Example 5.3. Consider the cube and the coordinate system shown in Fig. 5.2. The
cube has side a and mass M , which is uniformly distributed. The coordinate system
is located in the center of the solid and is parallel to its edges. Calculate the tensor of
inertia.

Figure 5.2 A cube with side a and the reference system.

Given the symmetry of the figure with respect to the coordinate system, we have

Ixx = Iyy = Izz, Ixy = Ixz = Iyz = 0.

By the definition

Ixx =
∑

i∈S

mih
2
i , (5.21)

where hi denotes the distance of the element of mass mi from the coordinate axis x.
In our case (5.21) it translates into

Ixx =
∫ a

2

x=− a
2

∫ a
2

y=− a
2

∫ a
2

z=− a
2

h2 (y, z) dm.

By the uniform distribution of the mass

dm = M

a3
dxdydz,

and it follows from Fig. 5.3 that

h2 (y, z) = y2 + z2,
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Figure 5.3 A differential element of mass and its position with respect to the x-axis.

and hence,

Ixx = M

a3

∫ a
2

x=− a
2

∫ a
2

z=− a
2

∫ a
2

y=− a
2

(

y2 + z2
)

dydzdx =

M

a3
a

(
∫ a

2

z=− a
2

∫ a
2

y=− a
2

(

y2 + z2
)

dydz

)

=

M

a3
a

(

a
y3

3

∣
∣
∣
∣

a
2

− a
2

+ a
z3

3

∣
∣
∣
∣

a
2

− a
2

)

= M
a2

6
.

So, finally,

I = M
a2

6
I3×3,

where I3×3 is the unitary matrix of the third order.

Example 5.4.

a) Let us calculate the tensor of inertia for the cylinder of mass M uniformly dis-
tributed with respect to the coordinate system shown in Fig. 5.4. Recall that in
Section 3.6 of Chapter 3 the main moments have already been calculated:

Ixx = Iyy = M

4

(

ρ2 + h2

3

)

, Izz = M

2
ρ2. (5.22)

In addition, by the symmetry with respect to the coordinate system, it is con-
cluded that

Ixy = Ixz = Iyz = 0,
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Figure 5.4 Cylinder and reference system.

whereby

I=

⎡

⎢
⎢
⎢
⎣

M
4

(

ρ2 + h2

3

)

0 0

0 M
4

(

ρ2 + h2

3

)

0

0 0 M
2 ρ2

⎤

⎥
⎥
⎥
⎦

.

b) Fig. 5.5 shows two solids of uniformly distributed mass referring to two coordi-
nate systems located in their centers of inertia. Determine their inertia tensors.
The center of inertia is determined first. It is clear that it is on the axis of symme-
try. Since the body has volume

V = πR2h

3
,

Figure 5.5 Solid cone and hollow cylinder referring to two coordinate systems.

the following density of mass results:

μ = 3M

πR2h
.

On the other hand, the expression for the calculation of the position of the center
of inertia has to be found at a height of the base given by

hCI = 1

M

∫ h

0
wdm,
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where w denotes the position with respect to the base of the cone, which is the
elementary disk of radius ρ and differential height dw, whose mass results in

dm = μπρ2dw.

Figure 5.6 Relationship between the radius ρ of the elementary disk and its height w.

From Fig. 5.6 we have

ρ = R

h
(h − w) .

So,

hCI = μπR2

Mh2

∫ h

0
w (h − w)2 dw = μπR2

Mh2

h4

12
= h

4
.

We can now calculate the moments of inertia. To determine Iyy consider the
elementary disk of radius ρ and height dz (see Fig. 5.7), which has the mass

dm = μπρ2dz,

Figure 5.7 Elementary disk of radius ρ and height dz.

where now

ρ = R

(
3

4
− z

h

)

. (5.23)

This gives

dm = μπR2
(

3

4
− z

h

)2

dz = 3M

h

(
3

4
− z

h

)2

dz. (5.24)
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Recall from Section 3.6 of Chapter 3 that the moment of inertia of the disk in
question with respect to the axis, passing through its diameter, has the expression

dIyy = 1

4
ρ2dm.

This result together with the Steiner’s theorem allows us to obtain the formula

Iyy =
∫ 3h/4

z=−h/4

(
1

4
ρ2 + z2

)

dm,

where with relationships (5.23)–(5.24) we get

Iyy = 3M

h

∫ 3h/4

−h/4

(
3

4
− z

h

)2
[

1

4
R2
(

3

4
− z

h

)2

+ z2

]

dz =

3

80
M
(

h2 + 4R2
)

.

Recalling that

Ixx = Iyy

and

Izz = 3

10
MR2

(see Section 3.6 of Chapter 3). In addition, by the symmetry it is verified that

Ixy = Ixz = Iyz = 0.

So finally,

I=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3

80
M
(

h2 + 4R2
)

0 0

0
3

80
M
(

h2 + 4R2
)

0

0 0
3

10
MR2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

c) Assuming that the cylinder is solid with mass Ms , its density is given as

μ = Ms

πR2h
,

and since for the hollow cylinder we have

M = πμh
(

R2 − ρ2
)

,
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the following relationship is satisfied:

Ms = MR2

R2 − ρ2
.

Now, using expressions (5.22), it is concluded that

Ixx = Iyy = Ms

4

(

R2 + h2

3

)

− (Ms − M)

4

(

ρ2 + h2

3

)

=
Ms

4

(

R2 − ρ2
)

+ M

4

(

ρ2 + h2

3

)

= M

4

(

R2 + ρ2 + h2

3

)

and

Izz = Ms

2
R2 − (Ms − M)

2
ρ2 =

Ms

2

(

R2 − ρ2
)

+ M

2
ρ2 = M

2

(

R2 + ρ2
)

,

whereas, by symmetry, the centrifugal moments are equal to zero:

Ixy = Ixz = Iyz = 0,

which is why

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M

4

(

R2 + ρ2 + h2

3

)

0 0

0
M

4

(

R2 + ρ2 + h2

3

)

0

0 0
M

2

(

R2 + ρ2
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the examples that follow, the obtained expressions are applied.

Example 5.5. Find KO and T for the body of mass M shown in Fig. 5.8. The ref-
erence system is located in the center of inertia of the solid and the mass has a
uniform distribution. For the present case the quantities sought are given by the re-
lations (5.12)–(5.13), that is,

KO = Iω, T = 1

2
ωT KO.

From Fig. 5.8 we have

ω =
⎡

⎢
⎣

0

ω cosα

ω sinα

⎤

⎥
⎦ ,
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Figure 5.8 Solid cylinder rotating obliquely.

and by the result of the second exercise of this section it is easily verified that

KO =

⎡

⎢
⎢
⎣

0
M
2 ρ2ω cosα

M
4

(

ρ2 + h2

3

)

ω sinα

⎤

⎥
⎥
⎦

and

T = M

4
ω2
[

ρ2 cos2 α + 1

2

(

ρ2 + h2

3

)

sin2 α

]

.

Example 5.6. Fig. 5.9 shows a pendulum of length R formed by a disk of radius ρ

and uniformly distributed mass M . It is considered that the mass of the pendulum arm
is zero. Calculate the speed with which the center of the disk passes through the lower
position if the pendulum is released with zero velocity from the horizontal position.
As it is a conservative system, we have for the lower point of the trajectory

T = Mg(R − ρ). (5.25)

Figure 5.9 Pendulum.

On the other side, by (5.10) we have

T = 1

2
ωT

Iω, (5.26)
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where by the results of Section 3.6 of Chapter 3 in conjunction with Steiner’s theorem

Ixx = 1

4
Mρ2, Iyy = M

(
1

4
ρ2 + (R − ρ)2

)

, Izz = M

(
1

2
ρ2 + (R − ρ)2

)

,

while by the symmetry of the disk

Ixy = Ixz = Iyz = 0,

which finally gives

I =

⎡

⎢
⎢
⎢
⎣

1
4Mρ2 0 0

0 M
(

1
4ρ2 + (R − ρ)2

)

0

0 0 M
(

1
2ρ2 + (R − ρ)2

)

⎤

⎥
⎥
⎥
⎦

.

Now, the rotation velocity in the lower point is given by

ω = (0 0 ω
)T

,

so that expression (5.26) becomes

T = 1

4
Mω2

(

ρ2 + 2(R − ρ)2
)

and by (5.25)

1

2
Mω2

(
1

2
ρ2 + (R − ρ)2

)

= Mg(R − ρ),

from which we derive

ω =
√
√
√
√

2g(R − ρ)

1

2
ρ2 + (R − ρ)2

,

which allows to obtain the speed sought via the expression

v = ω(R − ρ) = (R − ρ)

√

4g(R − ρ)

ρ2 + 2(R − ρ)2 .

Example 5.7. Fig. 5.10 shows a solid cylinder of uniformly distributed mass M and
rotating eccentrically with respect to the axis shown. Regarding the reference system
shown, let us calculate KO and T . By the relations (5.12)–(5.13) we have

KO = Iω, T = 1

2
ωT KO,
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Figure 5.10 Solid cylinder in eccentric rotation.

and (see Fig. 5.10)

ω = [0 ω 0
]T

.

In view of the results of the second exercise of this section and by the Steiner’s theorem
it follows that

Ixx = M

4

(

ρ2 + 4h2

3

)

, Iyy = M

4

(

5ρ2 + 4h2

3

)

, Izz = 3M

2
ρ2.

Body symmetricity gives

Ixy = Iyz = 0

since

Ixz =
∑

i∈S

mixizi =
∑

i∈S

mixi(zi − 1

2
h + 1

2
h)

=
∑

i∈S

mixi(zi − 1

2
h) + Mh

2

1

M

∑

i∈S

mixi .

But

∑

i∈S

mixi(zi − 1

2
h) = 0,

1

M

∑

i∈S

mixi = ρ,

which leads to

Ixz = Mhρ

2
.
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So, finally,

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
4

(

ρ2 + 4h2

3

)

0 −Mhρ

2

0 M
4

(

5ρ2 + 4h2

3

)

0

−Mhρ

2
0

3M

2
ρ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence

KO =

⎡

⎢
⎢
⎣

0

M
4 ω
(

5ρ2 + 4h2

3

)

0

⎤

⎥
⎥
⎦

and

T = M

4
ω2
(

5ρ2 + 4h2

3

)

.

Example 5.8. Fig. 5.11 shows the profile of a disk rotating eccentrically and
obliquely. The disk has a radius ρ and its mass M is evenly distributed. Calculate
KO and T . Again, the amounts sought are given by the relationships (5.12)–(5.13):

KO = Iω, T = 1

2
ωT KO.

Figure 5.11 Disk in eccentric and oblique rotation.

From Fig. 5.11 we can see that

ω = [0 ω sinα ω cosα
]T

.

As above, the moments of inertia can be calculated using the results obtained in Sec-
tion 3.6 of Chapter 3 and the Steiner’s theorem:

Ixx = M

(
1

4
ρ2 + a2

)

, Iyy = M

(
1

2
ρ2 + a2

)

, Izz = 1

4
Mρ2,

whereas by the symmetry with respect to x

Ixz = 0
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and taking into account that y = 0 we have

Ixy = Iyz = 0.

Therefore

I =

⎡

⎢
⎢
⎢
⎣

M
(

1
4ρ2 + a2

)

0 0

0 M
(

1
2ρ2 + a2

)

0

0 0 1
4Mρ2

⎤

⎥
⎥
⎥
⎦

,

which finally leads to

KO =

⎡

⎢
⎢
⎢
⎢
⎣

0

Mω

(
1

2
ρ2 + a2

)

sinα

1

4
Mωρ2 cosα

⎤

⎥
⎥
⎥
⎥
⎦

and

T = 1

2
Mω2

[(
1

2
ρ2 + a2

)

sin2 α + 1

4
ρ2 cos2 α

]

.

Example 5.9. In Fig. 5.12 a profile disk is shown. It is subjected to the two rotations
shown. Determine KO considering that the disk has a uniformly distributed mass M .
By (5.12)

KO = Iω.

Figure 5.12 Disk subjected to two rotations.

Now, by Section 3.6 of Chapter 3 and the Steiner’s theorem it follows that

Ixx = Iyy = M

(
1

4
ρ2 + 1

2
a2
)

, Izz = 1

2
Mρ2.
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In view of symmetry we also have

Ixz = Ixy = Iyz = 0.

Hence

I =

⎡

⎢
⎢
⎢
⎣

1
2M
(

1
2ρ2 + a2

)

0 0

0 1
2M
(

1
2ρ2 + a2

)

0

0 0 1
2Mρ2

⎤

⎥
⎥
⎥
⎦

.

From Fig. 5.12 we have

ω =
[

0 −
√

2

2
ω1

√
2

2
ω1 + ω2

]T

,

and therefore

KO =

⎡

⎢
⎢
⎢
⎢
⎣

0

−
√

2

4
Mω1

(
1
2ρ2 + a2

)

1

2
Mρ2

(√
2

2 ω1 + ω2

)

⎤

⎥
⎥
⎥
⎥
⎦

.

5.4 Euler’s dynamic equations

Recall that if ω is the angular velocity of the solid with respect to the pivot O ′, which
is fixed at the origin O of the coordinate system, then by (5.12), (5.13), and the Rizal’s
theorem

KO = Iω, T = 1

2
ωT KO, K̇O = MFext ,O . (5.27)

Recall also that if the main moments of inertia are central (origin O is located in the
inertial center of the solid) and the coordinate system has been chosen according to
the directions in which the moments of inertia are extreme, then the inertial tensor has
the form

I =
⎡

⎣

A 0 0
0 B 0
0 0 C

⎤

⎦ , (5.28)

where

A := Ixx, B := Iyy, C := Izz,
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which gives

KO = Api + Bqj + Crk, (5.29)

if

ω = pi + qj + rk. (5.30)

Deriving (5.29) with respect to time under the consideration that the origin O remains
in the inertial center of the solid and the reference system rotates with the body, we
get

K̇O = Aṗi + Bq̇j + Cṙk + Ap
d

dt
i + Bq

d

dt
j + Cr

d

dt
k.

By Euler’s theorem

d

dt
i = [ω, i] = rj − qk,

d

dt
j = [ω, j] = −ri + pk,

d

dt
k = [ω,k] = qi − pj,

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5.31)

which is why

K̇O = [Aṗ + (−B + C)qr] i + [Bq̇ + (A − C)pr] j+
[Cṙ + (−A + B)pq] k.

}

(5.32)

From the third relation of (5.27) and considering (5.32), we come to the so-called
the Euler dynamic equations, which are formed by the group of nonlinear differential
equations

Aṗ + (C − B)qr = (MFext ,O

)

x
,

Bq̇ + (A − C)pr = (MFext ,O

)

y
,

Cṙ + (B − A)pq = (MFext ,O

)

z
.

⎫

⎪⎪⎬

⎪⎪⎭

(5.33)

These equations describe the dynamics of the components p, q, and r of the rotation
vector ω. There are several important particular cases of the previous equations, which
are discussed in what follows.

5.4.1 Special cases of Euler’s equations

1. The Euler case

In this case the moment of the external forces is null, namely,

MFext ,O = 0. (5.34)
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It follows that

K̇O = 0, (5.35)

and therefore the Euler dynamic equations take the form

Aṗ + (C − B)qr = 0,

Bq̇ + (A − C)pr = 0,

Cṙ + (B − A)pq = 0.

⎫

⎪⎬

⎪⎭

(5.36)

If the first equation of (5.36) is multiplied by p, the second by q, and the third by r

and then the resulting expressions are added, the following relationship is reached:

Apṗ + Bqq̇ + Crṙ = 0, (5.37)

which corresponds to

1

2

d

dt
[Ap2 + Bq2 + Cr2] = 0. (5.38)

Now, note that from the second equation of (5.27)

T = 1

2
ωT KO = 1

2

[

p q r
]

⎡

⎣

Ap

Bq

Cr

⎤

⎦= 1

2
(Ap2 + Bq2 + Cr2), (5.39)

that is, in view of (5.38),

d

dt
T = 0.

Then the following result has been demonstrated.

Lemma 5.6. In a rotating solid body, if MFext ,O = 0, then

T = const
t

. (5.40)

To state the following result, remember that the angular acceleration has been de-
fined as

ε = ω̇.

Lemma 5.7. In the same conditions of the previous lemma

ε ⊥ KO.

Proof. From the expression of ω given (5.30) we have

ε = d

dt
(pi + qj + rk) = ṗi + q̇j + ṙk + p

d

dt
i + q

d

dt
j + r

d

dt
k,
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but by the Euler’s theorem

p
d

dt
i + q

d

dt
j + r

d

dt
k =

p [ω, i] + q [ω, j] + r [ω,k] = [ω,ω] = 0.

Therefore

ε = ṗi + q̇j + ṙk.

Note now that

(ε,KO) = [ṗ q̇ ṙ
]

⎡

⎣

Ap

Bq

Cr

⎤

⎦= Apṗ + Bqq̇ + Crṙ

and in view of (5.37) the lemma is proven.

Remark 5.6. The case of Euler entails two important conditions on the dynamics of
the components of ω. The first one is obtained from (5.39) and (5.40):

Ap2 + Bq2 + Cr2 = 2T = const
t

. (5.41)

For the second, note that as a consequence of (5.35)

KO = const
t

,

whereby

K2
O = const

t
,

or, in view of (5.29),

A2p2 + B2q2 + C2r2 = K2
O = const

t
. (5.42)

Additional conditions on the geometry of the solid allow obtaining more results.

First case: A �= B (restriction to the symmetry of the solid). This extra condition
allows, starting from (5.41) and (5.42), to arrive at explicit expressions for the deter-
mination of p, q, and r . To see it, note that multiplying (5.41) by B and subtracting
the resulting expression from (5.42) yields

A(A − B)p2 + C (C − B) r2 = K2
O − 2BT .

Define

(A − B)p2 = f1

(

r2
)

, (5.43)
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which leads to

f1

(

r2
)

:= 1

A

[

K2
O − 2BT + C(B − C)r2

]

.

On the other hand, multiplying (5.41) by A and subtracting the resulting expression
from (5.42), we get

B (B − A)q2 + C (C − A)r2 = K2
O − 2AT,

which implies

(A − B)q2 = f2

(

r2
)

(5.44)

with

f2

(

r2
)

:= − 1

B

[

K2
O − 2AT + C(A − C)r2

]

.

The product of (5.43) and (5.44) leads to

(A − B)2q2p2 = f1

(

r2
)

f2

(

r2
)

,

or equivalently,

(A − B)qp = ±
√

f1
(

r2
)

f2
(

r2
)

.

But given that by the third equation of (5.36)

Cṙ = (A − B)qp,

we get the differential expression for r:

Cṙ ∓
√

f1
(

r2
)

f2
(

r2
)= 0,

which can be solved in view of the fact that it only depends on one variable r . The
achievement of the expression for r will in turn allow the corresponding expressions
to be found,

p = p(r), q = q(r),

in view of (5.41) and (5.42).

Second case: A = B. The solid exhibits a certain symmetry and is called the La-
grange case. Based on this condition, by the third equation of (5.36) we have

ṙ = 0,



Euler’s dynamic equations 179

that is,

r(t) = const
t

, (5.45)

and as a result from (5.42) we get

p2 + q2 = const
t

. (5.46)

Immediately, the results (5.45) and (5.46) allow to formulate the following lemma.

Lemma 5.8. In the Lagrange case we have

ω = ‖ω‖ = const
t

. (5.47)

2. Gyroscope

In Fig. 5.13 the device called gyroscope is shown. It is formed by a body subjected to
the two rotations shown. The gyroscope has special importance, mainly to determine
the presence of a certain condition of movement called regular precession, which
possesses interesting properties.

Figure 5.13 Gyroscope.

The following definition is related to Fig. 5.13.

Definition 5.6. A movement produced by a gyroscope with the condition of symmetry
A = B is called regular precession if the following conditions are met:

(i)

ω1 = ‖ω1‖ = const
t

,

(ii)

ω2 = const
t

,

(iii)

θ := ω̂1,ω2 = const
t

.



180 Classical and Analytical Mechanics

The requirements (i)–(iii) allow to formulate an explicit condition for the existence
of the regular precession movement. In Fig. 5.13 it is seen that the angular velocity ω,
with which the solid moves, is given by

ω = ω1 + ω2

since ω1 and ω2 have a common pivot. Note also that p, q, and r are the components
of ω with respect to the coordinate system that appears and is fixed to the solid. On
the other hand, in view of the conditions (i)–(iii) that the movement in question must
meet, it is concluded that

KO = const
t

. (5.48)

So, if we rewrite KO in the form

KO = KOeKO

with eKO
as a unit vector in the direction of K, from (5.48) we have

K̇O = KO ėKO
,

and by the Euler’s theorem, the configuration of the movement, and conditions (i)–(iii)
it follows that

ėKO
= [ω2, eKO

]

,

which gives

K̇O = [ω2,KO ] ,

and considering that

K̇O = MFext ,O,

we finally get

[ω2,KO ] = MFext ,O . (5.49)

This last relation will allow to prove the following result.

Theorem 5.1 (N.E. Zhukovski, 1916). To achieve a regular precession movement
with the parameters ω1, ω2, and θ , it is necessary and sufficient to apply the following
external force moment:

MFext ,O = [ω2,ω1]

[

C + (C − A)
ω2

ω1
cos θ

]

. (5.50)
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Proof. Note that for the configuration shown in Fig. 5.13, we have

p = 0, q = −ω2 sin θ, r = ω1 + ω2 cos θ,

and therefore, formula (5.29) becomes

KO = −A(ω2 sin θ) j + C (ω1 + ω2 cos θ)k, (5.51)

taking into account that A = B. The relationship (5.51) and the fact that

ω2 = [0 −ω2 sin θ ω2 cos θ
]ᵀ

allow to obtain the left part of (5.49). Indeed,

[ω2,KO ] =
⎡

⎢
⎣

i j k

0 −ω2 sin θ ω2 cos θ

0 −Aω2 sin θ C (ω1 + ω2 cos θ)

⎤

⎥
⎦

=
[

−Cω2 sin θ (ω1 + ω2 cos θ) + Aω2
2 sin θ cos θ

]

i

=
[

− (C − A)ω2
2 sin θ cos θ − Cω1ω2 sin θ

]

i

= −ω1ω2 sin θ

[

(C − A)
ω2

ω1
cos θ + C

]

i

= [ω2,ω1]

[

(C − A)
ω2

ω1
cos θ + C

]

,

which proves (5.50).

Example 5.10. A gyroscope is in space; given the magnitudes ω1, ω2 let us calculate
the angle θ , formed when the regular precession is presented.

In space we have

MFext ,O = 0,

so that expression (5.50) leads to two possibilities:

a)

[ω2,ω1] = 0,

so

θ is any,

and
b)

(C − A)
ω2

ω1
cos θ + C = 0,
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giving

θ = arccos

(
C

A − C

ω1

ω2

)

.

The Euler’s equations (5.33) allow to obtain other properties of the regular preces-
sion movement, in addition to those given by the Zhukovski’s theorem. From Fig. 5.13
and by the configuration of the movement it is concluded that the projection of ω on
the z-axis remains constant, that is,

r = const
t

, (5.52)

implying

ṙ ≡ 0.

This fact and the condition of symmetry A = B, to be substituted in the third of Euler’s
equations, lead to a necessary condition of the movement of regular precession:

(

MFext ,O

)

z
= 0,

which coincides with what was predicted by the previous theorem. In addition, from
the fact that KO is constant and by (5.29) it follows that

A2p2 + B2q2 + C2r2 = const
t

,

which, in view of (5.52) and the premise A = B, is reduced to the following condition
on the components p and q of ω with respect to the fixed coordinate system to the
body shown in Fig. 5.13:

p2 + q2 = const
t

.

5.5 Dynamic reactions caused by the gyroscopic moment

When the solids rotate eccentrically, or when the axis of rotation does not coincide
with any of the directions in which the moments of inertia are extreme or is perpen-
dicular to them, additional forces are generated in the supports of the axis of rotation.
These forces are called dynamic reactions and are very important especially for the de-
sign of said supports. To understand the above, the two mentioned cases are analyzed
through two very illustrative examples.

Example 5.11. Suppose a disk of mass M rotates on an axis that does not pass through
its center of inertia, as illustrated in Fig. 5.14. Clearly, if there were no rotation (static
case)

Fstat
A + Fstat

B = −mg.
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Figure 5.14 Disk rotating eccentrically.

However, in the presence of rotation, an additional force due to the dynamic effect
appears, namely,

Fdin = −Mω2a,

where a represents the position vector of the center of inertia of the disk. So now we
have

FB = Fstat
B + Fdin

B , FA = Fstat
A + Fdin

A ,

where the superscripts stat and din denote that the force in question is due to the
static part and to the dynamic part, respectively. Clearly

F stat
A + F stat

B = mg,

while

Fdin
A + Fdin

B = mω2a.

To determine the values of Fdin
A and Fdin

B the condition is used that, for the type of
support shown in Fig. 5.14, the moment of forces is zero, that is,

Mdin
A = 0, Mdin

B = 0.

Therefore

Mdin
A = Mω2al1 − Fdin

B (l1 + l2) = 0,

Mdin
B = Mω2al2 − Fdin

A (l1 + l2) = 0,

from which we finally get

Fdin
A = Mω2a

l2

(l1 + l2)
, F din

B = Mω2a
l1

(l1 + l2)
.

So, the situation becomes dangerous if the condition

Fdin
A,B ≥ Fdin

crit

is violated, where Fdin
crit represents the permitted design value of the supports.
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Example 5.12. Assume that the solid shown in Fig. 5.15 is in space. The illustrated
coordinate system has its origin in the center of inertia of the body and its directions
follow the directions in which the moments of inertia are extreme. The axis of rotation
of the solid is in the plane yz, and it also passes through the center of inertia, but it
keeps an inclination α with respect to the axis y. Because of the condition that the
body is in space, it does not present the weight force. Therefore we have the first
relationship

Fdin
A = Fdin

B . (5.53)

Figure 5.15 Solid rotating around a given direction.

The second relation is given by the first of the Euler’s equations (5.33), namely,

Aṗ + (C − B)qr = Fdin
A l1 + Fdin

B l2. (5.54)

But from Fig. 5.15 one can see that

p ≡ 0,

so

ṗ = 0,

which, in view of (5.53) and (5.54), gives

Fdin
A = Fdin

B = C − B

l1 + l2
qr = C − B

2 (l1 + l2)
ω2 sin 2α, (5.55)

since here

q := ω cosα, r := ω sinα.

The following example is a direct application of the newly obtained result and
illustrates the magnitude of the forces that can be generated.

Example 5.13. The solid cylinder of uniformly distributed mass M of Fig. 5.16 sat-
isfies the conditions of the previous exercise. Calculate Fdin

A and Fdin
B for the values

α = 30◦, ω = 1000 rad/s, M = 10 g, l = 2 m, r = 0.1 m, h = 1 m.
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Figure 5.16 Solid cylinder rotating around a given direction.

From the second example of Section 5.4 we have

B := Iyy = 1

2
Mr2, C := Izz = 1

4
M

(

r2 + h2

3

)

,

so (5.55) leads to

Fdin
A = Fdin

B =
h2

3
− r2

8l
Mω2 sin 2α,

and for the given values

Fdin
A = Fdin

B = 175.01 N.

5.6 Exercises

Exercise 5.1. It is required to find the main axes of inertia at point A of a homoge-
neous circular cylinder of mass m, height H , and base radius R (see Fig. 5.17). Show
that one of the main axes is perpendicular to the plane passing through the axis of the
cylinder and point A, and the other two lie in this plane and make the angles α and
π/2 − α with the generatrix of the cylinder. For the case H = √

3R, show that the
inertia tensor in the principal axes for point A is

I = mR2

4

⎡

⎣

9 0 0
0 9 0
0 0 2

⎤

⎦ .

Exercise 5.2. A biaxial gyro platform carries two identical gyroscopes rotating with
a constant angular velocity ω. A special device holds the axis of the first gyroscope in
the plane of the platform, and the second perpendicular to it. The centers of inertia of
the gyroscopes C1 and C2 are located in the plane of the platform at a distance a from
its center (see Fig. 5.18).
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Figure 5.17 A homogeneous circular cylinder of mass m, height H , and base radius R.

Figure 5.18 A biaxial gyro platform carries two identical gyroscopes rotating with a constant angular
velocity.

Considering gyroscopes to be thin homogeneous dikes of mass m and radius r ,
show that:

1) In the case when the platform rotates with an angular velocity ω1 around the axis
of Cζ , perpendicular to the plane of the platform, the kinetic energy of the system
is equal to

T1 = mr2

2
ω (ω + ω1) + m

(

a2 + 3

8
r2
)

ω2
1.

2) In the case when the platform rotates with an angular velocity ω2 around the axis
of Cη, parallel to the axis of the first gyroscope, the kinetic energy of the system
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is equal to

T2 = mr2

2
ω (ω + ω2) + m

(

a2 + 3

8
r2
)

ω2
2.

Exercise 5.3. A constant (in value and in direction) moment of external forces M0
is applied to a symmetric (A = B �= C) solid body with a fixed point O. Show that,
if at the initial moment the angular velocity of the body was equal to zero, then its
dependence on time will be given by the formulas

p(t) = t

A

(

M
(1)
0 cos


t2

2
− M

(2)
0 sin


t2

2

)

,

q(t) = t

A

(

M
(1)
0 sin


t2

2
+ M

(2)
0 cos


t2

2

)

,

r(t) = M
(3)
0

C
t,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

where


 = M
(3)
0

C − A

AC

and M
(i)
0 (i = 1,2,3) are the projections of the moment of external forces M0 to the

main axis of inertia in the initial body position.

Exercise 5.4. To stabilize the angle of various objects, gyroscopes are used, applying
a moment to the object which compensates for the external disturbing effect. The
servo-gyroscope drive circuit is shown in Fig. 5.19. Supposing A = B �= C, show
that the angular velocities ω1 and ω2, at which the disturbing periodic moment M =
M0 cosωt , applied to the outer frame and directed along the axis 1-1, are

ω1 = M0

Cω
, ω2 = ω.

Figure 5.19 The servo-gyroscope drive circuit.
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Figure 5.20 The frame of the balancing gyroscope mounted on a fixed base using bearings D and E.

Exercise 5.5. The frame of the balancing gyroscope is mounted on a fixed base using
bearings D and E. The gyro rotor performs n revolutions per second around the axis
Oζ . Distance DE = l (see Fig. 5.20). The moment of inertia of the rotor relative to
the axis of symmetry is C. Having neglected the mass of the frame, show that the
strengths of the dynamic reactions to the frame bearings D and E, caused by the
gyroscopic moment, are

Fdin
D = Fdin

E = 2πnω
C

l
.
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Newton’s second law and Euler’s dynamic equations are the formalism that allows
to obtain the equations of movement in mechanical systems. However its application
is usually complicated if the geometry of the movement is not simple and/or by the
presence of restrictions to it. The Lagrange equations, whose study is addressed in
this chapter, are an essential tool for these cases, since they naturally include the con-
straints, in addition to being based on the concept of generalized coordinates, which
allow describing the dynamics in terms of the variables, associated with the degrees
of freedom of the system. This particularity also makes it possible to apply the same
formalism to electrical and even electromechanical systems. Fundamental parts of the
Lagrange equations are generalized forces, which are defined and characterized before
obtaining said equations.

6.1 Mechanical connections

In general, the different material points of the mechanical systems keep connections
to each other, called connections or mechanical constraints. These are relationships
that define the movement and may be described by mathematical expressions. In the
examples that follow, several cases are illustrated.

Example 6.1.

(a) Consider the simple pendulum in Fig. 6.1. Assume that the arm is rigid and has
length l. It is clear that the dynamic evolution of the distal point of the pendulum
is restricted to the variety

x2(t) + y2(t) = l2, z(t) = 0.

These two expressions represent the mechanical connections of this system.

Classical and Analytical Mechanics. https://doi.org/10.1016/B978-0-32-389816-4.00017-X
Copyright © 2021 Elsevier Inc. All rights reserved.
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Figure 6.1 Simple pendulum with rigid arm.

(b) Consider a simple pendulum again, but suppose now that the massless arm is
extensible and that its length follows the temporal law l(t) (Fig. 6.2). In these
circumstances the dynamics of the distal point of the pendulum is conditioned
by the mechanical constraints

x2 (t) + y2 (t) = l2 (t) , z(t) = 0.

Figure 6.2 Simple pendulum with extendable arm.

(c) Let the disk of radius r roll without sliding as shown in Fig. 6.3. The point of
the disk in contact with the x-axis obeys the differential equation

ẋ(t) = rφ̇(t),

Figure 6.3 Disc rolling without sliding.

so the mechanical connections that restrict the dynamics of this point are given
by relationships

x(t) − rφ(t) = const
t

, z(t) = 0.

(d) Suppose that the point shown in Fig. 6.4 moves with velocity v of constant
magnitude. In this case the movement is given in such a way that the following
relationship must be satisfied:

ẋ2(t) + ẏ2(t) + ż2(t) = v2 = const
t

.
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Figure 6.4 Point moving with constant magnitude speed.

(e) Consider a disk that moves on a horizontal plane, possibly with sliding, as shown
in Fig. 6.5. According to the coordinate system used, the movement of the points
of the disk obeys the restriction

z(t) ≥ 0.

Figure 6.5 Disk with movement on the xy-plane.

Let S be a system of N material points. Quite generally, the mechanical connections
between the points of S can be expressed by relations of the type

fk(t,R(t), Ṙ(t)) = 0, k = 1, ...,m, (6.1)

where m is the number of mechanical constraints, while R(t) is the vector, formed by
the position vectors of all the points, i.e.,

R (t) :=
⎡

⎢
⎣

r1(t)
...

rN(t)

⎤

⎥
⎦ ∈ R3N.

A restriction

fk(R(t), Ṙ(t)) = 0,

which is not explicitly dependent on time, is called stationary.

Definition 6.1. A vector R that satisfies the mechanical constraints (6.1) is said to be
in a possible position of the points of S.
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Definition 6.2. If the relation of a mechanical connection, for example fk , is inte-
grable, then it can be represented in the form

f̃k(t,R (t)) = 0,

and it is called holonomic. Otherwise, which is the general case, it is called non-
holonomic. A system whose mechanical constraints are holonomic receives the name
of holonomic.

Clearly, if S is a holonomic system with m mechanical connections, it is possible
to enter the parameter vector

q := [q1 q2 · · · qn

]T
, (6.2)

where

n = 3N − m,

such that the possible positions of the material points of the mechanical system can be
expressed as

R (t) = R (t,q) . (6.3)

The number n is known as the number of degrees of freedom of system S.

Definition 6.3. The set of n parameters that make up q in (6.2) is said to be indepen-
dent if the expression

n
∑

i=1

λi

∂R (t)

∂qi

= 0, λi ∈ R,

is satisfied if and only if

λi = 0, i = 1, ..., n.

Definition 6.4. The n parameters qi , i = 1, ..., n, in (6.2) are called generalized co-
ordinates if the following conditions are satisfied:

• for each instant of time, function (6.3) is uniquely defined between the set of pos-
sible positions R(t) of the material points and a certain region of the space of q,

• the components of q are independent.

6.2 Generalized forces

Definition 6.5. For the possible position

rk = rk (t,q) , k = 1, ...,N,
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the infinitesimal displacement corresponding to this position is given by

drk := ∂rk

∂t
dt +

n
∑

i=1

∂rk

∂qi

δqi, k = 1, ...,N,

and is called a possible transfer. If in particular this displacement does not depend on

time, that is,
∂rk

∂t
= 0, we obtain

δrk =
n
∑

i=1

∂rk

∂qi

δqi, k = 1, ...,N.

This is referred to as a virtual possible transfer. Henceforth, only possible transla-
tions are considered; that is why we will use the term “virtual transfer,” omitting the
word “possible.”

If the translations of all the material points of S are virtual, the work developed by
the forces in the system is given by

δA|δR :=
N
∑

k=1

(Fk, δrk) =
N
∑

k=1

(

Fk,

n
∑

i=1

∂rk

∂qi

δqi

)

=
n
∑

i=1

(
N
∑

k=1

(

Fk,
∂rk

∂qi

))

δqi =
n
∑

i=1

Qiδqi,

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.4)

where

Qi :=
N
∑

k=1

(

Fk,
∂rk

∂qi

)

(6.5)

and Fk , k = 1, ...N , denotes the total force on the point k ∈ S.

Definition 6.6. The vector

Q := [Q1 Q2 · · · Qn

]T
,

where the component Qi , i = 1, ...n, is given by (6.5), is called vector of generalized
forces. The component Qi is the generalized force corresponding to the coordinate qi .

Remark 6.1. Note that (6.4) can be used to calculate the generalized force Qi . Indeed,
from this equation it is seen that if we fix the generalized coordinates qj , j �= i, that
is, δqj = 0, j �= i, we have

Qi = δA|δR

δqi

. (6.6)
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Mechanical restrictions are translated into forces on material points. These forces
are called reaction forces. The total reaction force exerted on the k-th material point
of the mechanical system will be denoted by Fk,reac. Then we have

Fk = Fk,ext + Fk,reac, k = 1, ...,N,

where Fk,ext is called external forces and encompasses the external and internal ac-
tions exerted on the k-th particle of S.

Remark 6.2. In view of the definitions

Qi,ext :=
N
∑

k=1

(

Fk,ext ,
∂rk

∂qi

)

, Qi,reac :=
N
∑

k=1

(

Fk,reac,
∂rk

∂qi

)

, i = 1, ..., n,

(6.7)

where Qi,ext and Qi,reac are called generalized external and reaction forces corre-
sponding to qi , respectively, we get

Qi = Qi,ext + Qi,reac,

or, in vector form,

Q = Qext + Qreac.

Definition 6.7. The mechanical constraints of a system are called ideal if the work,
developed by the reaction forces on any virtual translation δR, is zero, i.e.,

δAreac|δR =
N
∑

k=1

(

Fk,reac, δrk

)=
n
∑

i=1

Qi,reacδqi = 0,

for all δqi .

The following result is obvious.

Lemma 6.1. In systems whose mechanical connections are ideal, we have

Qi,reac = 0 ∀i = 1, ...n.

In the following example it is shown that the systems that appear have ideal me-
chanical connections.

Example 6.2.

a) Fig. 6.6 shows a simple pendulum. This system is composed of a material point,
and therefore

δAreac|δR = (Freac, δr) = (Freac, δr) = 0
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Figure 6.6 A simple pendulum.

since Freac and δr are orthogonal. Therefore, in this system the mechanical re-
striction is ideal.

b) A disc rolls without sliding as shown in Fig. 6.7. For this system Freac is given
by the sum of the friction force and the reaction of the floor, applied on the
material point A; therefore

δAreac|δR = (Freac, δrA) =
(

Freac,
δrA

δt

)

δt = (Freac,vA) δt = 0

since vA = 0. So, the mechanical restriction of this system is also ideal.

Figure 6.7 Disk in movement.

6.3 Dynamic Lagrange equations

Lemma 6.2 (Lagrange, 1750). Let S be a holonomic system of N material points
whose masses do not depend on the velocity q̇ or the position q. In such a system the
dynamics is governed by the following differential equation:

d

dt

∂T

∂q̇i

− ∂T

∂qi

= Qi, i = 1, ..., n, (6.8)

where T is the total kinetic energy of S.

Proof. Let mk be the mass of the k-th particle of S. By the Newton’s second law

d

dt
(mkvk) = Fk, k = 1, ...,N. (6.9)
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Multiplying scalarly (6.9) by
∂rk

∂qi

and adding on k = 1, ...,N , we get

N
∑

k=1

(
d

dt
(mkvk) ,

∂rk

∂qi

)

=
N
∑

k=1

(

Fk,
∂rk

∂qi

)

= Qi. (6.10)

Given the relation
(

d

dt
(mkvk) ,

∂rk

∂qi

)

= d

dt

(

mkvk,
∂rk

∂qi

)

−
(

mkvk,
d

dt

∂rk

∂qi

)

the left member of (6.10) can be represented as

N
∑

k=1

(
d

dt
(mkvk) ,

∂rk

∂qi

)

=
N
∑

k=1

[
d

dt

(

mkvk,
∂rk

∂qi

)

−
(

mkvk,
d

dt

∂rk

∂qi

)]

.

But, following a procedure similar to that used in Section 1.3 of Chapter 1, it is easily
verified that

∂rk

∂qi

= ∂vk

∂q̇i

,
d

dt

∂rk

∂qi

= ∂vk

∂qi

.

Therefore

N
∑

k=1

(
d

dt
(mkvk) ,

∂rk

∂qi

)

=
N
∑

k=1

[
d

dt

(

mk

(

vk,
∂vk

∂q̇i

))

− mk

(

vk,
∂vk

∂qi

)]

,

and since
(

vk,
∂vk

∂q̇i

)

= ∂

∂q̇i

(
1

2
(vk,vk)

)

,

(

vk,
∂vk

∂qi

)

= ∂

∂qi

(
1

2
(vk,vk)

)

,

we arrive at

N
∑

k=1

(
d

dt
(mkvk) ,

∂rk

∂qi

)

= d

dt

∂T

∂q̇i

− ∂T

∂qi

,

where

T := 1

2

N
∑

k=1

mk (vk,vk) .

Lemma 6.3. If the external forces are potential, then the generalized external forces
are also potential, that is, if there are N scalar functions such that

Fk,ext = −∇�k (rk) , k = 1, ...,N,
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then

Qext = −∇qV (t,q) ,

where

V (t,q) := �(R (t,q)) :=
n
∑

k=1

�k (rk (t,q)) . (6.11)

Proof. Remember that

Qi,ext :=
N
∑

k=1

(

Fk,ext ,
∂rk

∂qi

)

,

and, since external forces are potential, we have

Qi,ext = −
N
∑

k=1

(

∇�k (rk) ,
∂rk

∂qi

)

.

But in view of the relation
(

∇�k (rk) ,
∂rk

∂qi

)

= ∂

∂qi

�k (rk (t,q)) ,

we may conclude that

Qi,ext = − ∂

∂qi

N
∑

k=1

�k (rk (t,q)) .

Remark 6.3. Since the external forces can be separated into a potential and a non-
potential part, it follows that

Qext = Qpot + Qnon-pot .

Therefore Eq. (6.8) can be written in vector form as

d

dt
∇q̇T − ∇qT = Qpot + Qnon-pot + Qreac, (6.12)

where

Qpot := −∇qV (t,q)

and V (t,q) is given by (6.11).
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Definition 6.8. Function

L(t,q, q̇) := T (t,q, q̇) − V (t,q)

is referred to as the Lagrange function for system S.

The definitions of Qpot and L allow to express Eq. (6.12) in the form

d

dt
∇q̇L(t,q, q̇) − ∇qL(t,q, q̇) = Qnon-pot + Qreac,

which is called the Lagrange equation. A more common form of this expression is
obtained if one considers that the mechanical constraints are ideal. In such case

Qreac = 0,

and the Lagrange equation is reduced to

d

dt
∇q̇L(t,q, q̇) − ∇qL(t,q, q̇) = Qnon-pot . (6.13)

The Lagrange equation is a very powerful tool in determining the equations of
motion of the material points of a mechanical system. This point is illustrated with
some examples.

Example 6.3. In Fig. 6.8 a simple pendulum is shown whose arm is a spring of
stiffness k. Obtain the equations of motion for the point of mass m. The mechani-
cal constraint in this system is given by the relationship

z ≡ 0, (6.14)

Figure 6.8 Elastic arm pendulum.

which is obviously ideal. Then two additional parameters are required, for example l

and φ, to fix the system in a space. So, the generalized coordinates may be

q1 := l, q2 := φ.
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Clearly we have

x = q1 sinq2, y = q1 cosq2,

so that

ẋ = q̇1 sinq2 + q1q̇2 cosq2,

ẏ = q̇1 cosq2 − q1q̇2 sinq2.

That is why the kinetic energy has the expression

T = 1

2
m(ẋ2 + ẏ2) = 1

2
m(q̇2

1 + q2
1 q̇2

2 ).

It is now possible to calculate the generalized forces via expression (6.6):

Q1 = (mg cosq2 − k (q1 − l0)) (δq1)

δq1
= mg cosq2 − k (q1 − l0) ,

Q2 = −mg (sinq2) (q1δq2)

δq2
= −mgq1 sinq2,

where l0 represents the nominal length of the spring (without deformation). It is now
possible to calculate the Lagrange equations, using (6.8). For the first one we have

d

dt

∂

∂q̇1
T − ∂

∂q1
T = Q1,

so that

q̈1 − q1q̇
2
2 = g cosq2 − k

m
(q1 − l0) , (6.15)

while for the second one,

d

dt

∂

∂q̇2
T − ∂

∂q2
T = Q2,

we get

2q1q̇1q̇2 + q2
1 q̈2 = −gq1 sinq2. (6.16)

Alternatively, expression (6.13) can be used to arrive at the same results. For this
note that if the origin of the coordinate system is chosen as a gravitational potential
reference level, it is easily verified that

V (t,q) = �(R(t,q)) = −mgq1 cosq2 + 1

2
k (q1 − l0)

2 .

Then the function of Lagrange results:

L = T − V = 1

2
m(q̇2

1 + q2
1 q̇2

2 ) + mgq1 cosq2 − 1

2
k (q1 − l0)

2 .



200 Classical and Analytical Mechanics

Given that the constraints are ideal and that there are no non-potential forces, for the
first equation (6.13) we have

d

dt

∂

∂q̇1
L − ∂

∂q1
L = 0,

implying

d

dt
(mq̇1) −

(

mq1q̇
2
2 + mg cosq2 − k (q1 − l0)

)

= 0,

from which (6.15) follows. For the second Lagrange equation,

d

dt

∂

∂q̇2
L − ∂

∂q2
L = 0,

we have

d

dt
(mq2

1 q̇2) + mgq1 sinq2 = 0,

which leads to (6.16).

Example 6.4 (Elliptic pendulum). In Fig. 6.9 there is a block of mass M that can
slide without friction on a horizontal surface. The movement of the block is due to the
pendulum of mass m that is attached as shown.

(a) Obtain Lagrange equations for the system.
(b) Determine approximately the movement for small pendulum angles.

Figure 6.9 Pendulum in a block that slides without friction on a horizontal surface.

a) Denote the masses M and m by 1 and 2, respectively. Since the motion is planar,
we have the following two ideal mechanical constraints:

y1 ≡ 0, (x2 − x1)
2 + y2

2 ≡ l2 = const
t

.

So, two generalized coordinates are required. They are chosen as follows:

q1 = x1, q2 = ϕ.
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The kinetic energy is first determined, which, by the König’s theorem, results in

T = 1

2
(M + m) q̇2

1 + 1

2
ml2q̇2

2 + mlq̇1q̇2 cosq2.

If the sliding surface is chosen as the reference level of the potential energy, we
have

V = −mgl cosq2.

The last two results allow to obtain the function of Lagrange:

L := T − V = 1

2
(M + m) q̇2

1 + 1

2
ml2q̇2

2 + ml (q̇1q̇2 + g) cosq2.

Note that there are no non-potential forces. The first Lagrange equation is ob-
tained with

d

dt

∂L

∂q̇1
− ∂L

∂q1
= 0,

where

d

dt
[(M + m) q̇1 + mlq̇2 cosq2] = 0,

or equivalently,

(M + m) q̈1 + ml
(

q̈2 cosq2 − q̇2
2 sinq2

)

= 0. (6.17)

For the second equation we have

d

dt

∂L

∂q̇2
− ∂L

∂q2
= 0,

so

d

dt
m
(

l2q̇2 + lq̇1 cosq2

)

+ ml (q̇1q̇2 + g) sinq2 = 0,

where finally

lq̈2 + q̈1 cosq2 + g sinq2 = 0. (6.18)

b) If q2 ≈ 0 and q̇2 ≈ 0, then

sinq2 � q2, cosq2 � 1, q2
2 � 0, q̇2

2 � 0.

Under these conditions the Lagrange equations (6.17) and (6.18) are reduced to

(M + m) q̈1 + mlq̈2 � 0,

lq̈2 + q̈1 + gq2 � 0,

}
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and from the latter we get

q̈2 + ω2q2 � 0,

with

ω2 := g

l

(

1 + m

M

)

.

From this expression it is deduced that q2 presents an oscillatory movement of
angular frequency ω and period τ with values

ω =
√

g

l

(

1 + m

M

)

, τ = 2π

ω
= 2π
√

g

l

(

1 + m

M

)
.

In particular if M 	 m, then we get the Huygens formula1

ω �
√

g

l
, τ � 2π

√

l

g
.

Example 6.5. For the mechanical system of Fig. 6.10 determine the Lagrange equa-
tions. Consider that the restoring forces of the springs are of the type

Fres = kδ,

Figure 6.10 Mechanical system of two masses.

where k is the constant called constant of stiffness of the springs and δ is the defor-
mation experienced. Assume that the cylinder is solid and rolls without sliding, while
the block experiences viscous friction on its lower surface and is subject to external
action as shown. The mechanical system in question consists of two elements subject
to the following ideal mechanical restrictions:

z1 = z2 = y1 = y2 ≡ 0.

1 Christiaan Huygens (1629–1695).
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Therefore two general coordinates are required to carry out the analysis. The most
suitable are

q1 := x1, q2 := x2,

where x1 and x2 denote, respectively, the displacements of the block and the cylinder.
The first step to follow is obtaining the expression for kinetic energy, which is given
by

T = T1 + T2,

where the subscripts 1 and 2 denote the block and the cylinder, respectively. Directly
we have

T1 = 1

2
m1q̇

2
1 ,

whereas to determine T2 one must resort to Section 3.5 in Chapter 3. It follows that

T2 = 1

2
m2q̇

2
1 + 1

2
m2q̇

2
2 + m2q̇1q̇2 + 1

2
Iωω2,

where the moment of inertia Iω and the angular velocity ω have the expressions

Iω = 1

2
m2r

2, ω = q̇2

r
,

with r as the radius of the cylinder. So, we have

T = 1

2
(m1 + m2) q̇2

1 + m2q̇1q̇2 + 3

4
m2q̇

2
2 .

The next step is to obtain the expression for the potential energy. For a spring of the
type of this system, the potential energy is given by

�res (δ) = k

2
δ2,

which is why

V = 2

(
1

2
c
(

q1 − q0,1
)2
)

+ 1

2
(2c)

(

q2 − q0,2
)2 =

c
[(

q1 − q0,1
)2 + (q2 − q0,2

)2
]

,

where q0,i , i = 1,2, represents the position without deformation of the springs. So,
the function of Lagrange results:

L := T − V = 1

2
(m1 + m2) q̇2

1 + m2q̇1q̇2 + 3

4
m2q̇

2
2−
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c
[(

q1 − q0,1
)2 + (q2 − q0,2

)2
]

.

Now it is time to determine the generalized non-potential forces. By expression (6.6)
it immediately follows that

Q1,non-pot = Fext − βq̇1, Q2,non-pot = 0,

where βq̇1 is the viscous friction force on the block. Now it is possible to determine
the Lagrange equations by (6.13). For the first coordinate equation we have

d

dt

∂

∂q̇1
L − ∂

∂q1
L = Q1,non-pot ,

implying

d

dt
[(m1 + m2) q̇1 + m2q̇2] + 2c

(

q1 − q0,1
)= Fext − βq̇1,

or finally,

(m1 + m2) q̈1 + m2q̈2 + βq̇1 + 2c
(

q1 − q0,1
)= Fext .

The second equation is given by

d

dt

∂

∂q̇2
L − ∂

∂q2
L = Q2,non-pot ,

which gives

d

dt

(

m2q̇1 + 3

2
m2q̇2

)

+ 2c
(

q2 − q0,2
)= 0,

or

m2

(

q̈1 + 3

2
q̈2

)

+ 2c
(

q2 − q0,2
)= 0.

6.4 Normal form of Lagrange equations

Definition 6.9. It is said that the differential equation

F
(

t,x, ẋ, ẍ, · · · ,x(n)
)

= 0

can be presented in the normal form if it is algebraically equivalent to

x(n) = G
(

t,x, ẋ, ẍ, · · · ,x(n−1)
)

.
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In the generalized coordinates q ∈ R
n, the kinetic energy presents a specific ex-

pression. Remember that

T := 1

2

∑

i∈S

mi (vi ,vi ) , (6.19)

but

vi := dri

dt
(t,q) = ∂ri

∂t
+

n
∑

j=1

∂ri

∂qj

q̇j ,

and therefore (6.19) results in

T = T0 + T1 + T2,

where

T0 := 1

2

∑

i∈S

mi

(
∂ri

∂t
,
∂ri

∂t

)

= 1

2

∑

i∈S

mi

∥
∥
∥
∥

∂ri

∂t

∥
∥
∥
∥

2

,

T1 :=
∑

i∈S

mi

⎛

⎝
∂ri

∂t
,

n
∑

j=1

∂ri

∂qj

q̇j

⎞

⎠ , (6.20)

T2 := 1

2

∑

i∈S

mi

⎛

⎝

n
∑

j=1

∂ri

∂qj

q̇j ,

n
∑

j=1

∂ri

∂qj

q̇j

⎞

⎠= 1

2

∑

i∈S

mi

∥
∥
∥
∥
∥
∥

n
∑

j=1

∂ri

∂qj

q̇j

∥
∥
∥
∥
∥
∥

2

. (6.21)

The property of the internal product allows to obtain more compact expressions for T1
and T2. From (6.20),

T1 =
n
∑

j=1

∑

i∈S

mi

(
∂ri

∂t
,

∂ri

∂qj

)

q̇j = (b (t,q) , q̇) ,

with

bj :=
∑

i∈S

mi

(
∂ri

∂t
,

∂ri

∂qj

)

, j = 1, ..., n,

and (6.21) becomes

T2 = 1

2

n
∑

j=1

n
∑

k=1

(
∑

i∈S

mi

(
∂ri

∂qj

,
∂ri

∂qk

))

q̇j q̇k = 1

2
q̇T A(t,q) q̇,

where the symmetric matrix A = (ajk

) ∈R
n×n has as a generic component

ajk =
∑

i∈S

mi

(
∂ri

∂qj

,
∂ri

∂qk

)

. (6.22)
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Theorem 6.1 (The basic mechanic theorem). The newly defined matrix A(t,q) is
always non-singular, namely, it has the property

detA(t,q) �= 0 ∀t,q.

Proof. Suppose that detA(t, q) = 0. Then there are numbers λk , k = 1, ..., n, not all
nulls such that

n
∑

k=1

ajkλk = 0 ∀j = 1, ..., n.

Multiplication by λj leads to

λj

n
∑

k=1

ajkλk = 0 ∀j = 1, ..., n,

and summing over j gives

n
∑

j=1

n
∑

k=1

ajkλjλk = 0.

From here and in view of (6.22) it follows that
n
∑

j=1

n
∑

k=1

(
∑

i∈S

mi

(
∂ri

∂qj

,
∂ri

∂qk

))

λjλk = 0,

or

∑

i∈S

mi

⎛

⎝

n
∑

j=1

λj

∂ri

∂qj

,

n
∑

k=1

λk

∂ri

∂qk

⎞

⎠=
∑

i∈S

mi

∥
∥
∥
∥
∥

n
∑

k=1

λk

∂ri

∂qk

∥
∥
∥
∥
∥

2

= 0,

which gives
n
∑

k=1

λk

∂ri

∂qk

= 0 ∀i ∈ S,

or in vector form,
n
∑

k=1

λk

∂R
∂qk

= 0,

which contradicts the fact that the parameters q are independent.

Corollary 6.1. The Lagrange equations (6.8) can always be presented in the normal
form, i.e.,

q̈ = F (t,q, q̇,Q) . (6.23)
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Proof. It has been shown that in generalized coordinates, kinetic energy has the ex-
pression

T (t,q, q̇) = T0 (t,q) + bT (t,q) q̇ + 1

2
q̇T A(t,q) q̇. (6.24)

In addition, from (6.12) the Lagrange equations can be represented as

d

dt
∇q̇T − ∇qT = Q,

which is equal to

d

dt
[b (t,q) + A(t,q) q̇] − ∇qT (t,q, q̇) = Q,

or in the extended form,

∂b
∂t

(t,q) +
n
∑

j=1

∂b
∂qj

(t,q) q̇j + dA

dt
(t,q) q̇ + A(t,q) q̈ − ∇qT (t,q, q̇) = Q.

(6.25)

From here, since A(t,q) is invertible, the result follows.

Remark 6.4. If the mechanical constraints of the system are stationary, then (6.25) is
reduced to

A(t,q) q̈ +
n
∑

j=1

∂b
∂qj

(t,q) q̇j − ∇qT (t,q, q̇) = Q,

where

T (t,q, q̇) = 1

2
q̇T A(t,q) q̇,

and, if also mk = const
t

, k = 1, ...,N , and the matrix A, the kinetic energy T and b do

not depend on t , then the equation is further reduced:

A(q) q̈ +
n
∑

j=1

∂b
∂qj

(q) q̇j − ∇qT (q, q̇) = Q.

In this last case, the system is called stationary.

6.5 Electrical and electromechanical models

Mechanical systems have many similarities with electrical systems. This circumstance
allows Lagrange equations, obtained considering systems of the first type, to be appli-
cable to systems of the second class. To see this, a compilation of some of the main
relationships of electricity, electromagnetism, and electrical circuits is made below.
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6.5.1 Some physical relations

1. The electromagnetic flux � and the current i that produces it have the relationship

� = Li, (6.26)

where L is a constant that depends on geometric factors and environment called
inductance. An electrical component that behaves according to (6.26) is also
called inductance.

2. Electromagnetic flux changes result in electrical potentials. Both are related by
the Faraday’s law

uL = −d�

dt
,

where uL denotes the voltage at the terminals of the inductance due to the change
in flow. Considering (6.26), the Faraday’s law can be expressed in the form

uL = −L
di

dt
. (6.27)

3. In resistive elements the voltage uR between the terminals of the component and
the current i flowing through obey the Ohm’s law, which is enunciated as

uR = Ri, (6.28)

where R is a constant that depends on the component properties and is called
resistance.

4. The voltage uC between the terminals of a capacitance and the charge q that is in
its plates follow the relationship

uC = q

C
= 1

C

∫

idt, (6.29)

where C is a constant that depends on the geometry and the environment called
capacitance. If it is considered that the current is defined as the temporal variation
of load, that is,

i := dq

dt
, (6.30)

then, alternatively, (6.29) may be expressed as

uC = 1

C

∫

idt. (6.31)

5. Kirchhoff’s laws establish two fundamental mathematical relationships in the
analysis of electrical circuits:

The mesh law: “The sum of the voltages in every closed loop of an electric cir-
cuit is zero.”
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The node law: “The sum of the currents in every point of an electric circuit is
zero.”

The laws of Kirchhoff in combination with the relations (6.27), (6.28), and (6.31)
allow to establish the dynamic equations that currents and voltages in electrical circuits
follow: the mesh law for the first and the node law for the second.

Figure 6.11 Electric circuit in series.

For example, consider the circuit shown in Fig. 6.11. By the mesh law we have

uR + uC = e + uL,

where by the relations (6.27), (6.28), and (6.31),

Ri + L
di

dt
+ 1

C

∫

idt = e. (6.32)

In terms of the charge q expression (6.30) results in

Lq̈ + Rq̇ + 1

C
q = e. (6.33)

Let us consider another example. Consider now the circuit shown in Fig. 6.12. By the
node law,

iR + iC = i + iL.

Figure 6.12 Electrical circuit in parallel.

Since the voltage across the terminals of all the electrical components is the same,
denoted u, it follows from (6.27), (6.28), and (6.31) that

u

R
+ 1

L

∫

udt + Cu̇ = i. (6.34)
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The derivation of (6.34) leads to

Cü + 1

R
u̇ + 1

L
u = di

dt
. (6.35)

6.5.2 Table of electromechanical analogies

Consider a material particle that moves in a line under the conditions

T = a

2
q̇2, V = c

2
q2, Qnon-pot = Q̂ − bq̇, Qreac = 0,

where Q̂ is a preassigned force acting on the particle, bq̇ denotes viscous friction, and
q is its position on the line. Immediately, the corresponding Lagrange equation results
in

aq̈ + cq = Q̂ − bq̇. (6.36)

The analysis and comparison of Eq. (6.36) on the one hand and Eqs. (6.33) and (6.35)
on the other hand allow to establish in a clear way a series of analogies between
mechanical and electrical concepts. Table 6.1 shows these analogies in condensed
form.

Table 6.1 Table of electromechanical analogies.

System (coordinates) T V Qnon-pot

Mechanics (position q) a b c 1
2aq̇2 1

2cq2 Q̂ − bq̇

1. Electrical (charge q) L R 1
C

1
2Lq̇2 1

2C
q2 e − Rq̇

2. Electrical (voltage u) C 1
R

1
L

1
2Cu̇2 1

2L
u2 di

dt
− 1

R
u̇

The usefulness of the analogies obtained is evidenced by some examples.

Example 6.6. Let us obtain the dynamic equations that govern the behavior of the
charges in the circuit of Fig. 6.13. From Fig. 6.13 and from Table 6.1 we have

i1 := dq1

dt
, i2 := dq2

dt
,

Q1,non-pot = e − R1q̇1, Q2,non-pot = −R2q̇2,

and in addition

T = L1q̇
2
1

2
+ L2q̇

2
2

2
, V = q2

1

2C1
+ (q1 − q2)

2

2C2
+ q2

2

2C3
,

so that

L = T − V = L1q̇
2
1

2
+ L2q̇

2
2

2
− q2

1

2C1
− (q1 − q2)

2

2C2
− q2

2

2C3
.
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Figure 6.13 Circuit of two loops.

From the first Lagrange equation,

d

dt

∂L

∂q̇1
− ∂L

∂q1
= Q1,non-pot ,

it follows then that the dynamic equation for the first loop results in

L1q̈1 + R1q̇1 + q1

C1
+ q1 − q2

C2
= e.

On the other hand, the second Lagrange equation,

d

dt

∂L

∂q̇2
− ∂L

∂q2
= Q2,non-pot ,

results in the equation for the charge of the second loop:

L2q̈2 + R2q̇2 + q2

C3
+ q2 − q1

C2
= 0.

Example 6.7. Fig. 6.14 shows the electrical circuit of a transformer with resistive
charge. Obtain the dynamic equations of the charge. Note first that the electromagnetic
flux on one branch of the transformer due to the current on the other is given by

�12 = μi1, �21 = μi2, (6.37)

Figure 6.14 Electric transformer.
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where μ is a constant of the transformer called mutual inductance. From Fig. 6.14
and from Table 6.1 we have

ii := dqi

dt
, i = 1,2,

Q1,non-pot = e − R1q̇1, Q2,non-pot = −R2q̇2,

and

T = L1q̇
2
1

2
+ L2q̇

2
2

2
∓ μq̇1q̇2, V = 0,

where the double sign of the third term of T takes into account the effect of mutual
inductance. The Lagrange equations are given by

d

dt

∂T

∂q̇i

− ∂T

∂qi

= Qi,non-pot , i = 1,2.

Then it follows that the dynamic equation for the first loop results in

L1q̈1 ∓ μq̈2 + R1q̇1 = e, (6.38)

and for the second one

L2q̈2 ∓ μq̈1 + R2q̇2 = 0. (6.39)

As a verification of the technique given by the Lagrange equations, the same equations
will be obtained by the alternative method of the mesh Law. By expressions (6.37),
the electromagnetic flows on the branches of the transformer are given by

�1 = L1i1 − �21 = L1i1 ∓ μi2,

�2 = L2i2 − �12 = L2i2 ∓ μi1.

By Faraday’s law we have

UL1 = −d�1

dt
, UL2 = −d�2

dt

and by the mesh law

R1i1 = e + UL1 , r2i2 = UL2

or

R1i1 + L1
di1

dt
∓ μ

di2

dt
= e,

R2i2 + L2
di2

dt
∓ μ

di1

dt
= 0,

where Eqs. (6.38) and (6.39) are followed.
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Example 6.8. In the circuit shown in Fig. 6.15 it is desired to determine the values
of the mutual inductance μ of the transformer and capacitor C12 such that there is no
influence between the loops. From the previous example and from Table 6.1 it follows
that

T = 1

2
L1q̇

2
1 + 1

2
L2q̇

2
2 − μq̇1q̇2

Figure 6.15 Transformer and variable-capacitance circuit.

and

V = q2
1

2C1
+ q2

2

2C2
+ (q1 − q2)

2

2C12
.

Since

Q1,non-pot = Q2,non-pot = 0,

by the technique of the Lagrange equations we get

L1q̈1 − μq̈2 + q1

C1
+ q1 − q2

C12
= 0,

L2q̈2 − μq̈1 + q2

C2
− q1 − q2

C12
= 0.

⎫

⎪⎪⎬

⎪⎪⎭

(6.40)

From the second equation in (6.40) it follows that

q̈2 = L−1
2 μq̈1 − L−1

2
q2

C2
+ L−1

2
q1 − q2

C12
.

Substitution the last expression in the first equation of (6.40) gives

L1q̈1 − μ

(

L−1
2 μq̈1 − L−1

2
q2

C2
+ L−1

2
q1 − q2

C12

)

+ q1

C1
+ q1 − q2

C12
= 0,

or

(

L1L2 − μ2
)

q̈1 +
(

L2

C1
− μ

C12
+ L2

C12

)

q1 +
(

− L2

C12
+ μ

C2
+ μ

C12

)

q2 = 0.
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Analogously, representing q̈1 from the first equation of (6.40) and substituting it into
the second one leads to

(

L1L2 − μ2
)

q̈2 +
(

μ

C1
+ μ

C12
− L1

C12

)

q1 +
(

− μ

C12
+ L1

C2
+ L1

C12

)

q2 = 0.

If you want the dynamics of q1 and q2 to be independent of each other, we should
satisfy

− L2

C12
+ μ

C2
+ μ

C12
= 0,

− μ

C12
+ L1

C2
+ L1

C12
= 0,

or equivalently,

μ
C12

C2
+ μ = L2, μ

C12

C1
+ μ = L1,

which gives

μ = L1C1 − L2C2

C1 − C2
,

C12 = L2 − L1

L1C1 − L2C2
C1C2.

The following example shows that electromechanical systems can also be ap-
proached with the studied technique.

Example 6.9. In Fig. 6.16 an electromechanical system is presented. It is an electrical
circuit in which the capacitor is formed by a fixed plate and a mobile plate suspended
from a spring. An external force F (t) in addition to the electrical attraction, exerted by
the other plate, acts on this plate. So the separation between plates d (t) is a temporary
function. Let us obtain the dynamic equations of the electric charge and the position
of the moving plate of the capacitor considering that if the distance between plates is
a, then the capacity is Ca . Recall that the capacitance of the parallel-plate capacitor
shown is obtained by

C (t) = εS

4πd (t)
, (6.41)

where ε is a constant that depends on the environment and S denotes the area of the
plates. Since it is known that if d = a, then C = Ca , one has

Ca = εS

4πa
.

With this relation, (6.41) can be expressed as

C (t) = Ca

a

d (t)
.
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Figure 6.16 Electromechanical variable-capacitor system.

Also if x := a − d denotes the residual separation with respect to a, then

C = Ca

a

a − x
.

If the generalized coordinates are selected as

q1 :=
∫

idt, q2 = x,

then by Table 6.1 and in view of Fig. 6.16 we get

T = L

2
q̇2

1 + m

2
q̇2

2 ,

V = q2
1

2C0
+ q2

1

2Caa
(a − q2) + k

2
q2

2 − mgq2,

where k is the stiffness coefficient of the spring. Clearly we also have

Q1,non-pot = e − Rq̇1, Q2,non-pot = F.

We can now get the function of Lagrange L = T − V , and since

d

dt

∂L

∂q̇i

− ∂L

∂qi

= Qi,non-pot , i = 1,2,

it is verified that the Lagrange equations are given by

Lq̈1 + q1

C0
+ q1

Caa
(a − q2) + Rq̇1 = e,

mq̈2 − q2
1

2Caa
+ kq2 − mg = F (t) .
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Example 6.10. The electromechanical system shown in Fig. 6.17 consists of an elec-
tromagnet whose function is to attract the metallic body of mass m shown. The value
of the inductance L̂ of the electromagnet is a known function of the separation x be-
tween the mass m and the core of the electromagnet. Let us:

a) obtain the Lagrange equations for the electric charge in the circuit and for the
distance x.

b) define xeq and ieq , considering that the electric voltage source is DC, and deter-
mine the equilibrium value for x.

Figure 6.17 Electromechanical system of variable inductance.

a) The general coordinates are

q1 :=
∫

i(t)dt, q2 := x.

Then from Table 6.1 and from Fig. 6.17 it follows that

T = 1

2
L̂ (q2) q̇2

1 + 1

2
mq̇2

2 ,

V = 1

2
k
(

q2 − q2,0
)2 + mgq2,

where q2,0 denotes the value of q2 for which the springs are not stressed and k/2
is the constant of stiffness. Evidently,

Q1,non-pot = e − Rq̇1, Q2,non-pot = 0.

We can now get the function of Lagrange L = T − V which results:

L = 1

2

[

L̂ (q2) q̇2
1 + mq̇2

2 − k
(

q2 − q2,0
)2
]

− mgq2.

The Lagrange equations

d

dt

∂L

∂q̇i

− ∂L

∂qi

= Qi,non-pot , i = 1,2,
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become

d

dt

[

L̂ (q2) q̇1

]

+ Rq̇1 = e,

d

dt
(mq̇2) − L̂′ (q2) q̇2

1 + k
(

q2 − q2,0
)+ mg = 0,

or equivalently,

L̂ (q2) q̈1 +
[

L̂′ (q2) q̇2 + R
]

q̇1 = e,

mq̈2 − L̂′ (q2) q̇2
1 + k

(

q2 − q2,0
)+ mg = 0.

⎫

⎬

⎭
(6.42)

b) In equilibrium we have

e ≡ E = const
t

, q̈1 = 0, q̇2 = q̈2 = 0,

which in view of (6.42) gives

q̇1 = ieq = E

R

and the value q2,eq = xeq may be found from the nonlinear equation

xeq = q2,0 − m

k
g + 1

k
L̂′ (xeq

)
(

E

R

)2

.

6.6 Exercises

Exercise 6.1. The Lagrange function of a free relativistic particle with a rest mass m0
has the form

L = −m0c

√

1 − c−2
(

ẋ2
1 + ẋ2

2 + ẋ2
3

)

,

where c is the speed of light. Show that its motion xi = xi (t) is described by the
relations

xi (t) = αit + βi (i = 1,2,3) .

Exercise 6.2. A heavy point can move without friction in the vertical plane of Oxz

along the curve

z = f (x).

Show that the Lagrange equation, describing this movement, has the form

ẍ

[

1 +
(

d

dx
f

)2
]

+
(

d2

dx2 f

)(
d

dx
f

)

ẋ2 +
(

d

dx
f

)

g = 0,

and try to find its first integral.
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Exercise 6.3. Using the Lagrange equations, show that the centers of mass of cylin-
ders 1, 2, and 4 (see Fig. 6.18) move vertically with constant accelerations,

w1 = 72

79
g, w2 = 58

79
g, w4 = 58

79
g,

Figure 6.18 Homogeneous cylinders interconnected by inextensible and weightless threads.

and the angular acceleration of cylinder 3 is ε3 = 2

79

g

r
, assuming that identical cylin-

ders of radius r are homogeneous and interconnected by inextensible and weightless
threads that do not slide on the surface of the cylinders.

Exercise 6.4. Compose the Lagrange equations for the two electrical circuits shown
in Fig. 6.19.

Figure 6.19 Electrical circuits.
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Figure 6.20 Electrical circuit modeling the Lagrange system.

Exercise 6.5. The mechanical system has a Lagrange function

L = m1

2
q̇2

1 + m2

2
q̇2

2 − k

2
q2

1 .

Show that the electrical circuit modeling this system has the form as in Fig. 6.20.
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In dynamic systems in general and in mechanics in particular, the determination of
equilibrium positions and their quality of stability are traditional problems of funda-
mental importance, which to date have been partially solved. In this chapter, with the
support of the concepts and results studied up to this point, such as coordinates and
generalized forces, the study of these topics is addressed and the most important re-
sults are reported. As will be seen, the most developed theory is that dealing with
conservative systems, which occupies most of the chapter.

7.1 Definition of equilibrium

Consider the mechanical system S with N material particles and m stationary me-
chanical constraints. In these circumstances, the expression of the possible positions
in generalized coordinates R (t) = R (t,q), introduced in the previous chapter, is sta-
tionary, that is, R = R (q).

Recall from the same chapter that in the normal form the Lagrange equations for
the system S have the expression

q̈ = F (t,q, q̇,Q) . (7.1)

Definition 7.1. Given Q, it is said that q∗ is an equilibrium position of system S if
the following condition is met:

F
(

t,q∗,0,Q
)≡ 0. (7.2)

Remark 7.1. In other words, q∗ is an equilibrium position if, when the system is in
that position and the velocity is zero, it remains there indefinitely. The condition that
the transformation R = R (q) is stationary ensures that any equilibrium in space q
defines a balance in space R and vice versa. For simplicity, equilibrium positions will
be called simply equilibria.

Classical and Analytical Mechanics. https://doi.org/10.1016/B978-0-32-389816-4.00018-1
Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-32-389816-4.00018-1
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Remark 7.2. By Newton’s second law, the position q∗ is an equilibrium if and only
if in that position the total force acting on each particle of S remains zero, i.e.,

Fi ≡ 0, i ∈ S.

The previous immediate observation allows to formulate the following important
result.

Lemma 7.1 (Principle of virtual displacements). The position q∗ is an equilibrium if
and only if in that position the elementary work done by the forces on S along any
virtual translation, with respect to R∗ := R (q∗), is zero.

Proof. Let R∗ := R (q∗) be the position vector corresponding to the equilibrium q∗.
By the previous observation R∗ is an equilibrium only if and only if in that position

Fi ≡ 0, i = 1, ...,N,

which in turn means that the work done by these forces along any virtual translation
with respect to R∗ is null, that is,

δA|δR :=
N
∑

k=1

(Fk, δrk) = 0.

The newly established property results in two very useful criteria.

Corollary 7.1. The position q∗ is an equilibrium if and only if in that position Q ≡ 0.

Proof. Recall that in generalized coordinates

δA|δR :=
n
∑

i=1

Qiδqi.

By the previous lemma, q∗ is an equilibrium if and only if in that position

δA|δR = 0 ∀δq,

and the result follows.

Corollary 7.2. If the system S has ideal constraints, then q∗ is an equilibrium if and
only if in that position

Qext ≡ 0.

Proof. The result is obtained from the previous corollary and the definition

Q := Qext + Qreac,
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since in systems with ideal constraints

Qreac ≡ 0.

Remark 7.3. The previous results are also valid for the case where the transformation
R (t) = R (t,q) is non-stationary. To show that it is enough to define the equilibria in
the space R instead of in the space q. It is said that the position R∗ is an equilibrium if,
when the system is in that position and the velocities at the initial instant are zero, the
system remains at R∗ indefinitely. Note that if the transformation R (t) = R (t,q) is
non-stationary, the equilibria in q and in R do not necessarily coincide. Now, the same
procedure of the test of the previous lemma can be used to verify that, in this case,
the principle of virtual displacements and the conclusions of two previous immediate
corollaries are also valid.

For the needs of this chapter the important result is that given by the first corollary,
so it is not important in what space the equilibria are defined.

7.2 Equilibrium in conservative systems

In Chapter 6 we have shown that if all effective forces are potential, the generalized
effective forces are also potential and

Qef = −∇qV (t,q) , (7.3)

where V (t,q) is the potential energy of the system and is obtained as indicated in
that chapter. The relation (7.3), in combination with the criterion given by the second
previous corollary, allows to establish that in the equilibrium positions the gradient of
the potential energy is equal to zero, that is, if the position q∗ is an equilibrium, then

∇qV (t,q) ≡ 0. (7.4)

In particular, the positions where the potential energy reaches its extremes are equilib-
ria, i.e., q∗ is an equilibrium if

q∗ := arg ext
q

V (t,q) .

In the following examples, the usefulness of the condition (7.4) is shown.

Example 7.1. In Fig. 7.1 a capacitor with charge q and whose plates are held by
springs is shown. The separation d between the plates is variable and each plate has a
mass m. Consider that when the springs are not loaded the separation between plates
is � and the capacity has the nominal value C�. The springs have a constant of stiff-
ness k. Determine the equilibrium position of the plates. Clearly the forces in this
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Figure 7.1 Capacitor whose plates are held by springs.

system are potential. It is a system with two masses that move on a straight line; there-
fore two generalized coordinates are required. Let them be

q1 := x1 − x0, q2 := x2 − x0,

where x1 and x2 denote the current lengths of the springs of the upper and lower
masses, respectively, while x0 represents the length corresponding to the springs with-
out elongation.

Recall from Chapter 6 that the capacity of the capacitor when the separation be-
tween the plates is d can be determined by the expression

Cd = �

d
C�. (7.5)

Recall from the table of electromechanical analogies of the same chapter that the po-
tential energy of a capacity capacitor Cd and charge q is given by

VC (d) = q2

2Cd

.

By (7.5) and considering that d = � − q1 − q2 it follows that

VC (q) = q2

2�C�

(� − q1 − q2) .

Then the joint potential energy of the system is given by

V = 1

2
k
(

q2
1 + q2

2

)

− mg (q1 + x0 + e0/2)

−mg(x0 + � + e0 − q2) + q2

2�C�

(� − q1 − q2) ,

where e0 denotes the thickness of the plates. In equilibrium we have

∇qV (q) ≡ 0,
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so that

∂V

∂q1
= kq1 − mg − q2

2�C�

= 0,

∂V

∂q2
= kq2 + mg − q2

2�C�

= 0,

which leads to

q∗
1 = 1

k

(
q2

2�C�

+ mg

)

,

q∗
2 = 1

k

(
q2

2�C�

− mg

)

.

Example 7.2. A series of masses mi , i = 1, ...n, is connected by n springs of stiffness
ki , i = 1, ...n, as shown in Fig. 7.2. Calculate the equilibrium position. Note that the
effective forces on the system are potential. In order to determine the solution, two
methods can be followed:

Figure 7.2 Series of masses connected by springs.

– the first one uses the result established in the second previous corollary, without
considering that the system is conservative;

– in the second, this fact is exploited via the gradient of the potential energy.

Since the masses move on a straight line, n generalized coordinates are required.
Let these be the elongations of the springs, that is,

qi := xi − x0
i , i = 1, ...n, (7.6)

where xi denotes the current distance between the masses i and i−1, and x0
i represents

the same distance with the spring without elongation.
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Method 1. In the balances, and only in them, the following condition is met:

Qi = 0, i = 1, ...n,

where

Qi =
n
∑

j=1

Fj

∂xj

∂qi

= Fi, i = 1, ...n,

with

F1 = m1g − k1q1,

F2 = m2g + k1q1 − k2q2,

...

Fn = mng + kn−1qn−1 − knqn.

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

From the condition Fi = 0 it follows that

q∗
1 = g

k1
m1,

q∗
2 = 1

k2

(

m2g + k1q
∗
1

)

,

...

q∗
n = 1

kn

(

mng + kn−1q
∗
n−1

)

,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

or by replacement,

q∗
i = g

ki

i
∑

j=1

mi, i = 1, ...n. (7.7)

Finally, we obtain

x∗
i = g

ki

i
∑

j=1

mj +
i
∑

j=1

x0
j , i = 1, ...n. (7.8)

Method 2. With generalized coordinates (7.6) for potential energy we have

V (q) = 1

2

n
∑

j=1

kjq
2
j − g

n
∑

j=1

mj

n
∑

s=j

xs .

In equilibrium we must have

∇qV
(

q∗)= 0.
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But

∂V

∂qi

(q) = kiqi − g

n
∑

j=1

mj

n
∑

s=j

∂xs

∂qi

,

and since

∂xs

∂qi

= δi,s ,

where the Kronecker symbol δi,s is defined as

δi,s =
{

1, if i = s,

0, if i �= s,

it follows that

∂V

∂qi

(q) = kiqi − g

i
∑

j=1

mj .

And since we must have
∂V

∂qi

(q∗) = 0, expressions (7.7) and (7.8) are concluded.

The solution of the following problem requires remembering the fundamental result
of the convex programming problem on the Euclidean space Rn.

Theorem 7.1 (See, for example, Chapter 21 in (Poznyak, 2008)). Let � be a convex
subset of Rn and let f : � → R and g : � → Rm be convex functions. Suppose there
is a point x1 ∈ � for which g (x1) < 0 (the Slater condition). Let

μ0 := inff (x) subject to x ∈ � and g (x) ≤ 0, (7.9)

and suppose that μ0 is finite. Then there is a vector 0 ≤ λ0 ∈ Rm such that

μ0 = inf
x∈�

L (x,λ0) , (7.10)

where

L (x,λ) = f (x) + (λ,g (x)) .

In addition, if the minimum is reached in (7.9) by x0 ∈ �, g (x0) ≤ 0, it is also reached
by the same x0 in (7.10) and the following complementary slackness condition holds:

(λ0,g (x0)) = 0. (7.11)

The function L is referred to as the Lagrangian function and the vector λ ∈ Rm is
known as the Lagrange multipliers vector.
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Example 7.3. Consider a system with n generalized coordinates subject to the fol-
lowing restriction:

n
∑

k=1

q2
k ≤ 1.

Suppose the system is conservative and that the potential energy is given by

V (q) =
n
∑

k=1

αkqk. (7.12)

We need to calculate equilibrium positions.
Considering that the positions where the potential energy reaches its extremes are

equilibria, the present problem can be reformulated in the following terms:

Find arg ext
q∈Rn

V (q) subject to
n
∑

k=1

q2
k − 1 ≤ 0.

Since � = Rn and V (q) and g (q) := ‖q‖2 −1 are convex, the solution of this problem
may be found as it is described above. The Lagrangian function (with m = 1) is given
by

L (q, λ) =
n
∑

k=1

αkqk + λ

(
n
∑

k=1

q2
k − 1

)

, λ ≥ 0,

which is a quadratic convex function with a global minimum q∗, which may be found
from the condition

∇qL
(

q∗, λ0
)= 0,

or, equivalently,

∂L1

∂qk

(

q∗, λ0
)= αk + 2λ0q

∗
k = 0, k = 1, ..., n, λ0 ≥ 0,

implying

q∗
k = − αk

2λ0
, k = 1, ..., n, λ0 ≥ 0. (7.13)

To obtain λ0 the condition (7.11) is used:

λ0g
(

q∗)= λ0

[
n
∑

k=1

(

− αk

2λ0

)2

− 1

]

=

λ0

[

1

4λ2
0

n
∑

k=1

α2
k − 1

]

= 0, λ0 ≥ 0.
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So, the non-trivial solution λ0 > 0 is

λ0 = ±1

2

√
√
√
√

n
∑

k=1

α2
k , (7.14)

which, when replaced in (7.13), leads to

q∗
k = ∓ αk

√
∑n

i=1 α2
i

, k = 1, ..., n.

Substituting this expression into (7.12) gives

V (q) =
n
∑

k=1

αkqk = ∓
n
∑

k=1

α2
k

√
∑n

i=1 α2
i

= ∓
√
√
√
√

n
∑

i=1

α2
i ,

which shows that the point q∗, minimizing V (q), is

q∗
k = − αk

√
∑n

i=1 α2
i

, k = 1, ..., n.

7.3 Stability of equilibrium

7.3.1 Definition of local stability

A fundamental problem in mechanics is the qualification of the behavior of systems in
the vicinity of equilibria. This qualification can be carried out via the characterization
of the behavior of the position and speed variables of the material points. By this
reason, this set p := (q, q̇) of variables is known as system states.

Definition 7.2. An equilibrium position q∗ of a system S is said to be locally stable
equilibrium position (or stable in the Lyapunov sense) if for any ε > 0 there exists
δ = δ (ε) > 0 such that if the initial state meets

∥
∥q (t0) − q∗∥∥≤ δ, ‖q̇ (t0)‖ ≤ δ, t0 ≥ 0,

then for all t ≥ t0

‖q (t)‖ ≤ ε, ‖q̇ (t)‖ ≤ ε.

In Fig. 7.3 the statement of the previous definition is explained graphically, using a
phase diagram. Here it is pointed out that if the equilibrium q∗ is stable locally, then
for any ε > 0 we may choose δ > 0 such that the path corresponding to any initial
state pini , contained in the 2δ side hypercube and centered on C := (q∗,0), remains
indefinitely in the hypercube of side 2ε and with the same center.
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Figure 7.3 Concept of equilibrium local stability.

Definition 7.3. An equilibrium position q∗ of a system S is said to be unstable, if it
is not stable.

The example below illustrates the concept of stability introduced in the preceding
definition.

Example 7.4. The system shown in Fig. 7.4 is known as a linear oscillator. It consists
of a mass m that can move horizontally without friction and is held by a stiffening
spring with rigidity k. Determine the stability of the equilibrium states. A generalized
coordinate is

q := x − x0,

Figure 7.4 Linear oscillator.

where x0 is the nominal (non-stiffened) length of the spring. Since it is a conservative
system with potential energy

V (q) = 1

2
kq2,

the equilibrium points are given by

∇qV
(

q∗)= kq = 0,

and therefore there is only one equilibrium point,

q∗ = 0. (7.15)
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To determine the stability of the equilibrium obtained, it is necessary to know the
trajectories of the state (q (t) , q̇ (t)); it is easily verified that the kinetic energy is

T = 1

2
mq̇2,

which is why the Lagrange function is given by

L(q, q̇) = 1

2
mq̇2 − 1

2
kq2.

Since there are no non-potential forces, it is obtained as a Lagrange equation for the
system,

mq̈ + kq = 0, (7.16)

and if the angular frequency is defined as

ω2 := k

m
≥ 0,

Eq. (7.16) is reduced to the form

q̈ + ω2q = 0. (7.17)

From the theory of linear ordinary differential equations it is known that the solution
of (7.17) has the following expression:

q (t) = q (t0) cosω(t − t0) + q̇ (t0)

ω
sinω(t − t0), (7.18)

with its derivative

q̇ (t) = −ωq(t0) sinω(t − t0) + q̇ (t0) cosω(t − t0).

These two relationships imply

|q (t)| ≤ |q(t0)| + 1

ω
|q̇ (t0)| ,

|q̇ (t)| ≤ ω |q(t0)| + |q̇ (t0)| ,
from which, if |q(t0)| ≤ δ and |q̇ (t0)| ≤ δ, we get

|q (t)| ≤ δ

(

1 + 1

ω

)

, |q̇ (t)| ≤ δ (1 + ω) .

Defining

ε := δ · max

{

1 + ω,1 + 1

ω

}

,
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it follows that

δ (ε) := ε

max

{

1 + ω,1 + 1

ω

} . (7.19)

The relationship (7.19) allows to ensure the local stability of the equilibrium (7.15).

7.3.2 Stability of equilibrium in conservative systems

Lagrange–Dirichlet theorem

In the previous example, to determine the stability of the equilibrium obtained, the
solution (7.18) of the system was used. Since the explicit expression of the solution
is not always available in the general case, it is important to have indirect criteria
to determine the stability of the balances without resorting to the solution. This is
possible and particularly simple in the case of conservative systems.

Theorem 7.2 (Lagrange–Dirichlet).1 Let q∗ be an equilibrium point of a conservative
system S with potential energy V (q) which is a continuous function. If

q∗ = arg min
q

V (q)

and there is a neighborhood A of q∗ such that this minimum is strict, namely,

V (q∗) < V (q) ∀q �= q∗, q ∈A,

then q∗ is a local equilibrium. In other words, the equilibria, where the potential
energy reaches its strict minima, are locally stable.

Proof. Define � := q − q∗, so that �̇ := q̇. Without loss of generality we can accept
that V (q∗) and take q∗ = 0. Define the ε-neighborhood of the point (0,0) as

�ε := {(�, �̇
)= (q, q̇) | ‖q‖ ≤ ε and ‖q̇‖ ≤ ε

}

.

In view of (6.24) the kinetic energy T (t,q, q̇) is a quadratic function and by the con-
tinuity property of V (q) we may conclude that the complete mechanical energy

E (t,q, q̇) = T (t,q, q̇) + V (q)

1 Johann Peter Gustav Lejeune Dirichlet (February 13, 1805–May 5, 1859) was a German mathematician
who made deep contributions to number theory (including creating the field of analytic number theory)
and to the theory of Fourier series and other topics in mathematical analysis; he is credited with being
one of the first mathematicians to give the modern formal definition of a function. Although his official
surname is Lejeune Dirichlet, he is commonly referred to as just Dirichlet, particularly for the eponym.
He improved on Lagrange’s work on conservative systems by showing that the condition for equilibrium
is that the potential energy is minimal.
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is also a continuous function vanishing in the point (0,0) (see Fig. 7.5). Any contin-
uous function attains its minimal E∗ > 0 and maximal E∗ values on the boundary �̄ε

of the set �ε. Thus, on the boundary �̄ε we have

E ≥ E∗ > 0.

Figure 7.5 The (ε, δ)-illustration of the local stability of an equilibrium point.

But on the other hand, since the continuous function E (t,q, q̇) vanishes at (0,0),
there necessarily exists a δ-neighborhood of this point such that

E (t,q, q̇) < E∗.

Hence, if q (t0) and q̇ (t0) are inside of this δ-neighborhood of the point (0,0), that is,

‖q (t0)‖ ≤ δ and ‖q̇ (t0)‖ ≤ δ,

then

E (t,q (t0) , q̇ (t0)) < E∗.

But for the conservative systems the complete mechanical energy E (t,q, q̇) remains
to be constant, that is,

E (t,q, q̇) = E0 = const
t

.

Therefore, we may conclude that during the whole time of motion

E (t,q (t) , q̇ (t)) < E∗

and, as a result, during the motion the trajectories (q (t) , q̇ (t)) cannot reach the bound-
ary �̄ε, where E (t,q (t) , q̇ (t)) ≥ E∗, keeping the relation (q (t) , q̇ (t)) ∈ �ε.
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Under the additional condition that the second derivative of the potential energy
exists and is positively defined in an equilibrium, the previous result allows obtaining
a sufficient condition to ensure its stability.

Corollary 7.3. Under the conditions of the previous theorem, if the Hessian matrix
∇2V (q) of the potential energy exists and

∇2V (q) > 0 ∀ q ∈ A − a neighborhood of the point q∗,

then q∗ is locally stable.

Proof. The strict minimum condition for smooth V (q) is as follows:

0 < V (q) − V (q∗) ∀q �= q∗, q ∈A,

∇V
(

q∗)= 0.

}

(7.20)

Here we have taken into account that q∗ is an equilibrium point, and hence,
∇V (q∗) = 0. On the other hand, in the small neighborhood of the point q∗ the poten-
tial energy can be expressed (using the Taylor expansion) as

V (q) = V (q∗) + (∇V
(

q∗) ,q − q∗)+
1

2

(

q − q∗)T ∇2V
(

q∗) (q − q∗)+ o
∥
∥q − q∗∥∥2 =

V (q∗) + 1

2

(

q − q∗)T ∇2V
(

q∗) (q − q∗)+ o
∥
∥q − q∗∥∥2

for any q ∈A, which in combination with (7.20) gives

0 < V (q) − V (q∗) = (q − q∗)T ∇2V
(

q∗) (q − q∗)+ o
∥
∥q − q∗∥∥2 ∀q ∈ A,

which is true if and only if

∇2V
(

q∗)> 0.

Illustrating examples

Two examples illustrate the application of the corollary result.

Example 7.5. Consider a conservative system with potential energy

V (q) = 1

2
qT Cq, C = CT .

Let us determine the equilibrium points and their stability. We will try to carry out the
analysis for the matrices

C1 =
[

5 2.5
2.5 1

]

, C2 =
[

5 2
2 1

]

.



Equilibrium and stability 235

The equilibria are given by the equation ∇V (q∗) = 0, that is,

Cq∗ = 0,

and if detC �= 0, it follows that the only equilibrium is

q∗ = 0.

By the previous corollary, the condition ∇2V (q∗) > 0 guarantees 0 is stable (globally,
as it is a single equilibrium), which translates into the condition

C > 0.

The matrix C1 turns out to be not positive definite, which follows from the Sylvester
criterion and that detC1 = −1.25 < 0, so nothing can be ensured about the stability
of 0. The matrix C2 is positive definite and consequently 0 is stable.

Example 7.6. Suppose a conservative system has potential energy

V (q) = V0 + (a,q) + 1

2
qT Cq,

where V0 ∈ R and a ∈ Rn are constants and detC �= 0. Let us determine the equilibria
and their stability if

C =
⎡

⎣

3 0 α

0 2 0
α 0 1

⎤

⎦ .

What is the range of values for α that ensure equilibrium stability? In equilibria, the
relation ∇V (q∗) = 0 is satisfied, and therefore

a + Cq∗ = 0,

and the only equilibrium is

q∗ = −C−1a. (7.21)

From the previous corollary, for q∗ to be stable (globally, for uniqueness), the condi-
tion ∇2V (q∗) > 0 is sufficient to be met, that is,

C > 0.

In the given matrix C, the first two major minors are positive and

detC = 2
(

3 − α2
)

.

It is positive if and only if

|α| < √
3,
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which, by the Sylvester criteria, turns out to be the stability interval

−√
3 < α <

√
3

for the point q∗ (see (7.21)).

Remark 7.4. The Lagrange–Dirichlet theorem, Theorem 7.2, remains also valid for
the wide class of non-conservative systems containing gyroscopic and dissipative
forces satisfying locally

n
∑

i=1

Q̃i (q, q̇) q̇i ≤ 0 (7.22)

for any (q, q̇) ∈ �ε. Indeed, suppose that at least one Q̃α (0,0) �= 0 in the equilib-
rium point (0,0). But, due to continuity Q̃α (q, q̇), we have Q̃α (q, q̇) �= 0 in some
neighborhood �ε of the origin. So,

n
∑

i=1

Q̃i (q, q̇) q̇i = Q̃α (q, q̇) q̇α > 0 (7.23)

if we take q̇α = sign
(

Q̃α (q, q̇)
)

. We are able to realize this selection since all gener-

alized coordinates qi and q̇i are independent. So, we obtain the following contradic-
tion: (7.23) contradicts (7.22). This means that for all i = 1, ..., n,

Q̃i (0,0) = 0,

which indicates that the presence of gyroscopic and dissipative forces does not violate
the property of the equilibrium local stability.

7.4 Unstable equilibria in conservative systems

The general problem of determining if an equilibrium is stable has led to more results
than determining whether, on the contrary, it is unstable. In the case that the systems
are conservative, again there are some conditions that ensure instability.

Remember that in a conservative system, q∗ is an equilibrium if and only if
∇V (q∗) = 0. Therefore, the serial development of potential energy around q∗ may
be written as

V (q) = V
(

q∗)+
∞
∑

j=2

Vj

(

q∗,q
)

, (7.24)

where Vj (q∗,q) denotes the upper term of j -th order, in particular,

V2
(

q∗,q
) := 1

2

(

q − q∗)T ∇2V
(

q∗) (q − q∗) . (7.25)
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The theorems following below are given without their proofs, which can be found
in (Malkin, 1952) and (Chetayev, 1965).

Theorem 7.3 (The first Lyapunov theorem on instability). If in the equilibrium q∗ of
a conservative system, the potential energy V (q) does not have a minimum and this
condition can be seen from the second order term (7.25), then q∗ is unstable.

The condition in the previous theorem is satisfied in the following simple case.

Corollary 7.4. If the Hessian matrix ∇2V (q∗) has at least one negative eigenvalue,
then q∗ is unstable.

Theorem 7.4 (The second Lyapunov theorem on instability). Consider a conservative
system with potential energy V (q). If in the equilibrium q∗ the function V (q) has a
strict maximum and this condition can be determined from the terms Vj (q∗,q) of
lower order (j ≥ 2) of the development (7.24), then q∗ is unstable.

The previous theorem has its most useful form in the following corollary.

Corollary 7.5. As an immediate consequence of the Lyapunov theorem, for (7.25), if
the Hessian matrix is negative definite, namely,

∇2V
(

q∗)< 0,

then q∗ is unstable.

Theorem 7.5 (The Chetayev theorem on instability). If the potential energy V (q∗) of
a conservative system is a homogeneous function, that is,

V (λq) = λmV (q) ∀λ ∈ R, ∀q ∈ Rn,

with m some integer, and if in equilibrium q∗ the function V (q) does not have a
minimum, then q∗ is unstable.

Example 7.7. Let a conservative system have potential energy

V (q) = a (1 − cos (αq)) , a,α �= 0.

Let us rate the stability of its equilibria. The equilibria q∗ satisfy

dV

dq

(

q∗)= αa sin
(

αq∗)= 0,

which is why

q∗
k = k

α
π, k = 0,±1,±2, ....

The evaluation of the second derivative in q∗ leads to

d2V

dq2

(

q∗
k

)= α2a cos
(

αq∗)= α2a cos (kπ) .
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So,

d2V

dq2

(

q∗
k

)

> 0, if k = 0,±2,±4, ...,

d2V

dq2

(

q∗
k

)

< 0, if k = ±1,±3, ...,

and by the Lagrange–Dirichlet theorem and the corollary to the second Lyapunov
theorem we may conclude that

q∗
k is locally stable for k = 0,±2,±4, ...,

q∗
k is locally unstable for k = ±1,±3, ....

Example 7.8. We need to determine equilibria and their corresponding stability in a
conservative system with the potential energy

V (q) = a

n
∏

i=1

qi, a �= 0.

Solution. The equilibria q∗ are given by the equation ∇qV (q∗) = 0, that is,

∂V

∂qi

(

q∗)= a

n
∏

j=1, j �=i

q∗
j = 0, i = 1, ....n.

That is why

q∗ = 0.

The application of the corollary to the second theorem of Lyapunov is not possible in
view of the fact that ∇2

qV (q∗) = 0. However, as easily verified, V (q) is homogeneous
and in 0 it has no minimum. Therefore, by the Chetayev theorem, the equilibrium
found is unstable.

Example 7.9. Fig. 7.6 shows a conservative system consisting of two spheres with
opposite electric charges e1 and e2. Both have mass m and are subject to the action of
the gravitational attraction force, but one of them is fixed to the origin of the coordinate
system. We will determine the set of equilibria and its stability. Clearly, the system has
three degrees of freedom. If we denote

q := [x y z
]T

,

and if the xy-plane is considered as the reference level of the gravitational potential
energy, the joint potential energy results in

V
(

q∗)= mgz − k
e1e2

r
,
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Figure 7.6 A potential electromechanical system.

where k > 0 is a constant and r =√x2 + y2 + z2. The equilibria can now be found by
the expression ∇qV (q∗) = 0. Therefore

∂V

∂x

(

q∗)= k
e1e2

(r∗)3
x∗ = 0, implying x∗ = 0, (7.26)

∂V

∂y

(

q∗)= k
e1e2

(r∗)3
y∗ = 0, implying y∗ = 0, (7.27)

and

∂V

∂z

(

q∗)= mg + k
e1e2

(r∗)3
z∗ = 0, implying

z∗

(r∗)3
= − mg

ke1e2
.

But, by (7.26) and (7.27),

r∗ = ∣∣z∗∣∣ ,

and hence,

sign z∗

|z∗|2 = − mg

ke1e2
.

Since
mg

ke1e2
> 0, we have

sign z∗ = −1

and

∣
∣z∗∣∣=

√

ke1e2

mg
,

so that

z∗ = −
√

ke1e2

mg
.
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The Hessian matrix ∇2
qV (q∗) may now be calculated:

∇2
qV
(

q∗)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2V

∂x2 (q∗)
∂2V

∂x∂y
(q∗)

∂2V

∂x∂z
(q∗)

∂2V

∂x∂y
(q∗)

∂2V

∂y2 (q∗)
∂2V

∂y∂z
(q∗)

∂2V

∂x∂z
(q∗)

∂2V

∂y∂z
(q∗)

∂2V

∂z2 (q∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with the elements

∂2V

∂x2 (q) = k
e1e2

r3

(

1 − 3x2

r2

)

, implying
∂2V

∂x2

(

q∗)= k
e1e2

|z∗|3 ,

∂2V

∂x∂y
(q) = −3k

e1e2

r5
xy, implying

∂2V

∂x∂y

(

q∗)= 0,

∂2V

∂x∂z
(q) = −3k

e1e2

r5
xz, implying

∂2V

∂x∂z

(

q∗)= 0,

∂2V

∂y2 (q) = k
e1e2

r3

(

1 − 3y2

r2

)

, implying
∂2V

∂y2

(

q∗)= k
e1e2

|z∗|3 ,

∂2V

∂y∂z
(q) = −3k

e1e2

r5 yz, implying
∂2V

∂y∂z

(

q∗)= 0,

∂2V

∂z2 (q) = k
e1e2

r3

(

1 − 3z2

r2

)

, implying
∂2V

∂z2

(

q∗)= −2k
e1e2

|z∗|3 .

So,

∇2
qV
(

q∗)= k
e1e2

|z∗|3

⎡

⎣

1 0 0
0 1 0
0 0 −2

⎤

⎦ ,

which has a negative eigenvalue, and because of the corollary to the Lyapunov’s first
theorem, the equilibrium found is unstable.

Example 7.10. Two fixed bars rotate with constant angular velocity ω as shown in
Fig. 7.7. On the bars, two dough rings m slide without friction. If the rings are subject
to the gravitational field shown and the force of attraction between them, determine
their equilibrium positions on the bars and find the stability conditions. The angle α

is fixed. The system has two degrees of freedom. The positions of the rings on their
respective bar and with respect to their union are chosen as generalized coordinates,
as indicated in Fig. 7.7. On the other hand, to show that the system is conservative,
note that the force of inertia on the bar 1 ring due to rotation is

Frot = mω2q1 sinα,
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Figure 7.7 Sliding rings on rotating bars.

and it can be represented as

Frot = − d

dq1

(

−1

2
mω2q2

1 sinα

)

,

whence it follows that this force is potential with the corresponding function

Vrot (q) = −1

2
mω2q2

1 sinα.

As is known, the power energy due to the attraction between the masses of the rings
is given by

Vat (q) = −k
m2

r
,

where k > 0 is a constant and

r :=
√

q2
1 + q2

2 − 2q1q2 cosα.

So, the total potential energy of the system is

V (q) = −mg (q1 cosα + q2) − k
m2

r
− 1

2
mω2q2

1 sinα,

whereby equilibria can be determined from the equation ∇qV (q∗) = 0. Then the fol-
lowing pair of simultaneous nonlinear equations is obtained:

g cosα + k
m

(r∗)3

(

q∗
2 cosα − q∗

1

)+ ω2q∗
1 sinα = 0,

g + k
m

(r∗)3

(

q∗
1 cosα − q∗

2

)= 0.

⎫

⎪⎪⎬

⎪⎪⎭

(7.28)
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They must be satisfied in equilibrium positions. Given the relations

∂2V

∂q2
1

(q) = k
m2

r3
− mω2 sinα,

∂2V

∂q2
2

(q) = k
m2

r3 ,

∂V

∂q1q2
(q) = −k

m2

r3
cosα,

we can see that the Hessian matrix is given by

∇2
qV
(

q∗)=

⎡

⎢
⎢
⎢
⎣

k
m2

(r∗)3
− mω2 sinα −k

m2

(r∗)3
cosα

−k
m2

(r∗)3
cosα k

m2

(r∗)3

⎤

⎥
⎥
⎥
⎦

=

k
m2

(r∗)3

⎡

⎣
1 − ω2

km
(r∗)3 sinα − cosα

− cosα 1

⎤

⎦ .

The Sylvester criterion applied to this matrix allows the following conclusions to be
established. By the Lagrange–Dirichlet theorem it follows that the equilibrium q∗ is
stable if the following inequalities both hold:

1 − ω2

km

(

r∗)3 sinα > 0,

1 − ω2

km

(

r∗)3 sinα − cos2 α > 0.

By the corollary to Lyapunov’s second theorem, instability of q∗ is ensured if

1 − ω2

km

(

r∗)3 sinα < 0,

or

1 − ω2

km

(

r∗)3 sinα − cos2 α < 0.

7.5 Exercises

Exercise 7.1. A particle of mass m, carrying a charge e, is located in an electric field
of a fixed charge q. Show that the equilibrium position of a particle in a uniform

gravitational field is displaced vertically from a fixed charge by a distance of

√ |eq|
mg

and this equilibrium is unstable.
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Exercise 7.2. The material point is in the gravity field on the surface

z = x2 − xy + y2.

Find the equilibrium positions and investigate their stability if there is no friction in
the system and the Oz axis is directed upwards.

Exercise 7.3. A ball suspended on a weightless rod of length l can oscillate in a verti-
cal plane that rotates around the vertical axis, passing through the point of suspension
of the pendulum, with a constant angular velocity ω. Show that the angle ϕ of devia-
tion of the rod from the vertical in the relative equilibrium position is equal to:

• ϕ∗ = 0 (stable equilibrium position) if ω2l ≤ g,
• ϕ∗ = π (unstable equilibrium position) if ω2l ≤ g,

• ϕ∗ = ± arccos
( g

ω2l

)

(stable equilibrium positions) if ω2l > g,

• ϕ∗ = {0,π} (unstable equilibrium positions) if ω2l > g.

Exercise 7.4. Prove the Earnshaw theorem: a collection of point charges cannot be
maintained in a stable stationary equilibrium configuration solely by the electrostatic
interaction of the charges, or in other words, any static configuration of electric charges
is unstable.

Exercise 7.5. Two identical balls, connected by a spring of stiffness k, can slide with-
out friction on the sides of a right angle lying in the horizontal plane. The length of
the spring in its undeformed state is equal to l0. Show that the system has a continuum

x2 + y2 = l2
0

of unstable equilibria.
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Lagrange’s equations are an invaluable tool in determining the important properties
of mechanical systems. The application of these equations and the study of the con-
sequences derived have been the object of the two preceding chapters. In the one that
now begins, one more application is presented to the study of the important problem
of oscillations of systems around equilibrium points. Using the usual technique of
linearization around an equilibrium point, Lagrange’s equations can be approximated
by a linear expression that describes in detail the dynamics of the system in a neigh-
borhood sufficiently close to the point of interest. To this approximate expression, all
known techniques for linear dynamic systems can be applied, leading to useful con-
clusions. In addition, if the system in question is restricted to being of the conservative
type, then the expression is reduced, which allows to characterize and calculate in a
very simple way its solutions, in particular those of interest in this chapter: oscilla-
tions.

8.1 Movements in the vicinity of equilibrium points

8.1.1 Small oscillations

Recall some facts from Chapter 6, where the Lagrange equations for holonomic sys-
tems with ideal constraints are discussed:
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d

dt
∇q̇T (t,q, q̇) − ∇qT (t,q, q̇) = Qpot + Qnon-pot . (8.1)

In the vicinity of an equilibrium q∗, position and velocity can be expressed as

q (t) = q∗ + �q (t) , q̇ (t) = �q̇ (t) .

In this chapter we will consider that both �q (t) and �q̇ (t) are small, that is,

‖�q (t)‖ � 1, ‖�q̇ (t)‖ � 1.

Suppose the system in question is stationary (Chapter 6, Section 6.4) and that the po-
tential energy is so as well, that is, V (t,q) does not explicitly depend on t . Therefore,
in the neighborhood of q∗ we have

T (q, q̇) = 1

2
q̇T A(q) q̇ = 1

2
�q̇T A

(

q∗ + �q
)

�q̇, V (q) = V
(

q∗ + �q
)

,

with A(q) = AT (q) > 0. By the Taylor expansion

A
(

q∗ + �q
)= A

(

q∗)+ o (‖�q‖) .

Therefore,

T (q, q̇) = 1

2
�q̇T A

(

q∗)�q̇ + o
(

‖�q‖ · ‖�q̇‖2
)

(8.2)

and

V
(

q∗ + �q
)= V

(

q∗)+ 1

2
�qT ∇2V

(

q∗)�q + o
(

‖�q‖2
)

.

Since q∗ is an equilibrium we have ∇V (q∗) = 0, and therefore the generalized poten-
tial force Qpot := −∇qV (q) may be represented as

Qpot = −∇q

[

V
(

q∗)+ 1

2
�qT ∇2V

(

q∗)�q + o
(

‖�q‖2
)]

= −∇2V
(

q∗)�q + o (‖�q‖) .

Here we have used the properties

∇qV
(

q∗)= 0 and ∇q (·) = ∇�q (·) .

On the other hand, if one considers that the non-potential generalized forces
Qnon-pot (t,q, q̇) do not explicitly depend on t , an analogous development leads to

Qnon-pot

(

q∗ + �q,�q̇
)= Qnon-pot

(

q∗,0
)+ ∇�qQnon-pot

(

q∗,0
)

�q+
∇�q̇Qnon-pot

(

q∗,0
)

�q̇ + o (‖�q‖ · ‖�q̇‖) .
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In view of the property

Qnon-pot

(

q∗,0
)= 0,

it follows that

Qnon-pot

(

q∗ + �q,�q̇
)= ∇�qQnon-pot

(

q∗,0
)

�q+
∇�q̇Qnon-pot

(

q∗,0
)

�q̇ + o (‖�q‖ · ‖�q̇‖) .

}

(8.3)

In this context, the Lagrange equation (8.1) can be expressed as (using (8.2)–(8.3))

A
(

q∗)�q̈ =
[

−∇2V
(

q∗)+ ∇�qQnon-pot

(

q∗,0
)]

�q+
∇�q̇Qnon-pot

(

q∗,0
)

�q̇ + o (‖�q‖ ,‖�q̇‖) ,

from which the following approximation of the Lagrange equation for small move-
ments in the vicinity of equilibrium q∗ is obtained:

A
(

q∗)�q̈ + B
(

q∗)�q̇ + C
(

q∗)�q = 0, (8.4)

where

A
(

q∗)= ∇2
�q̇T

(

q∗,0
)= ∇2

q̇T
(

q∗,0
)

,

B
(

q∗) := −∇�q̇Qnon-pot

(

q∗,0
)

,

C
(

q∗) := ∇2V
(

q∗)− ∇�qQnon-pot

(

q∗,0
)

,

⎫

⎪⎬

⎪⎭

(8.5)

and since �q̇ = q̇, �q̈ = q̈ (if a shift is made from the origin of the coordinate system
so that q∗ = 0), whereby �q = q, then (8.4) can be expressed in the standard form

Aq̈ (t) + Bq̇ (t) + Cq(t) = 0, A = A
(

q∗) , B = B
(

q∗) , C = C
(

q∗) ∈ Rn×n,

(8.6)

with some initial conditions

q (0) = q0, q̇ (0) = q̇0.

8.1.2 Characteristic polynomial

To calculate the solutions of (8.6) let us try to find it as

q = eλtu, (8.7)

with λ, a scalar called frequency, and a vector u �= 0, called amplitude, both constants
which should be determined. Substitution of (8.7) in (8.6) gives

λ2eλtAu + λeλtBu + eλtCu = 0,
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where the so-called characteristic equation, associated with (8.6), is obtained:
(

λ2A + λB + C
)

u = 0. (8.8)

The non-trivial condition u �= 0 is satisfied if and only if

p (λ) := det
(

λ2A + λB + C
)

= 0. (8.9)

The function p (λ) is called the characteristic polynomial, associated with (8.6),
and Eq. (8.9) is referred to as the characteristic equation. Opening (8.9), we may
represent it in the form

p (λ) = λ2nρ0 + λ2n−1ρ1 + · · · + ρ2n = 0, ρi ∈ R. (8.10)

8.1.3 General solution of the characteristic equation

From polynomial theory it follows that there are K different roots of (8.10), each with
a certain algebraic multiplicity, so that if mk is the corresponding multiplicity of the
root λk , k = 1, ...,K , we have

K
∑

k=1

mk = 2n.

Suppose that nk is the geometric multiplicity of the root λk (k = 1, ...,K), that is,

nk := dim Ker
(

λ2
kA + λkB + C

)

,

with nk ≤ mk , and denote as

Uk := {

uk,i

}nk

i=1

the set of amplitude vectors, corresponding to λk , obtained from the characteristic
equation (8.8), which (as is well known) are linearly independent. Suppose also that
the vector uk,i ∈ Uk corresponds to nk,i repetitions of the root λk , where

nk∑

i=1

nk,i = mk.

Therefore, by the linearity of (8.6), it is verified that the general form of the partial
basic solution, corresponding to the root λk , is given by

qk (t) = eλkt

nk∑

i=1

nk,i∑

j=1

γk,i,j t
j−1uk,i , (8.11)
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where

γk,i,j , k = 1, ...,K, i = 1, ..., nk, j = 1, ...nk,i ,

are constants that depend on the initial conditions. Consequently, the general solu-
tion q (t) of the characteristic equation (8.9) is the sum of partial basic solutions qk (t),
resulting in

q (t) =
K
∑

k=1

qk (t) . (8.12)

8.2 Oscillations in conservative systems

The condition Qnon-pot = 0, typical for conservative systems, allows to obtain interest-
ing simplifications of the results, obtained in the previous section. The most important
simplification has to do with matrices B and C in (8.5). It is verified that these are
reduced to

B = 0, C = ∇2V
(

q∗) ,

so (8.6) takes the form

Aq̈ + Cq = 0, 0 < A = AT , C = CT , A,C ∈ Rn×n. (8.13)

The special properties of (8.13) allow to determine certain important aspects of the
concepts previously introduced. Note that for this case, the associated characteristic
equation results in

(

λ2A + C
)

u = 0, (8.14)

with λ2 satisfying

det
(

λ2A + C
)

= 0. (8.15)

8.2.1 Some properties of the characteristic equation

Resolving (8.15), the solutions obtained allow to determine from (8.14) the corre-
sponding amplitude vectors. But when one of these vectors is known and if the root
λ2

j to which it belongs is unknown, one can proceed in the following way. Let uj be
the known vector. By the scalar multiplication of (8.14) by uj it follows that

λ2
j

(

uj ,Auj

)= − (uj ,Cuj

)

,
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and, in view of the property A > 0, we have

λ2
j = −

(

uj ,Cuj

)

(

uj ,Auj

) . (8.16)

Proposition 8.1. Let λ2
i , λ2

j be two solutions of (8.15) and let ui , uj be two corre-

sponding amplitude vectors, obtained from (8.14). If λ2
i �= λ2

j , then ui , uj are orthog-
onal,

ui⊥
A

uj ,

with respect to A, that is,
(

uj ,Aui

)= 0. (8.17)

Proof. From (8.14) it follows that

λ2
i Aui = −Cui , (8.18)

λ2
jAuj = −Cuj , (8.19)

from where, by scalarly multiplying (8.18) by uj and (8.19) by ui , we get

λ2
i

(

uj ,Aui

)= − (uj ,Cui

)

,

λ2
j

(

ui ,Auj

)= − (ui ,Cuj

)

,

whose difference, under the consideration that the matrices A and C are symmetric,
results in

(

λ2
i − λ2

j

)(

uj ,Aui

)= 0,

and the conclusion (8.17) follows.

The immediate result above serves as a tool to prove the following two propositions.

Proposition 8.2. Let σ := {

λ2
k

}n

k=1 be the set of solutions of (8.15). Then all elements
of σ are real, i.e., σ ⊂ R.

Proof. Suppose there is a solution λ2
i ∈ σ which is complex, that is,

λ2
i = μ′

i + jμ′′
i , μ′

i ∈ R, 0 �= μ′′
i ∈ R, j := √−1.

Therefore, since the coefficients of det
(

λ2A + C
)

are real,

λ2
i = μ′

i − jμ′′
i

also belongs to σ . If

ui = v′
i + jv′′

i , v′
i ∈ Rn, 0 �= v′′

i ∈ Rn,
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is the amplitude vector corresponding to λ2
i , then

ui = v′
i − jv′′

i

corresponds to λ2
i . Since λ2

i �= λ2
i , from Proposition 8.2, it follows that

(ui ,Aui ) = 0. (8.20)

But taking into account that A = AT > 0, we get

(

v′
i − jv′′

i ,A
(

v′
i + jv′′

i

))=
(

v′
i ,Av′

i

)+ j
(

v′
i ,Av′′

i

)− j
(

v′′
i ,Av′

i

)+ (

v′′
i ,Av′′

i

)=
(

v′
i ,Av′

i

)+ (

v′′
i ,Av′′

i

)

> 0.

So, v′′
i �= 0 contradicts (8.20).

Proposition 8.3. In the context of Proposition 8.2, if λ2
i �= λ2

j , then the corresponding
vectors ui and uj are linearly independent, which means that the relation

ciui + cj uj = 0 (8.21)

is valid only when

ci = cj = 0.

Proof. Let ci and cj be two scalars that make the relationship (8.21) true. Multiply it
scalarly by Aui . Then, by Proposition 8.2

(

ciui + cj uj ,Aui

)= ci (ui ,Aui ) + cj

(

uj ,Aui

)

︸ ︷︷ ︸

0

= ci (ui ,Aui )

and in view of the fact that A > 0, in order to satisfy (8.21) we must have ci = 0. But
if this is so, since uj �= 0, from (8.21) we conclude that cj = 0.

8.2.2 Normal coordinates

In addition to the properties already obtained, we can know more about the form of
the solutions of (8.13). We need the following result from linear algebra theory (see,
for example, (Poznyak, 2008, Theorem 7.3)).

Theorem 8.1. For any two quadratic forms

fA (x) = (x,Ax) , A = Aᵀ,

fB (x) = (x,Bx) , B = Bᵀ,
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when one quadratic form is strictly positive, i.e., (x,Ax) > 0 for any x �= 0, x ∈ Rn,
there exists a non-singular transformation

S = (s1, ..., sn)
ᵀ , si ∈ R1×n,

such that in new variables z, defined as

z = S−1x, x = Sz,

the given quadratic forms have the following expressions:

fA (x) = (x,Ax) = (

z, SᵀASz
)= (z, z) =

n
∑

i=1

z2
i ,

fB (x) = (x,Bx) = (

z, SᵀBSz
)=

n
∑

i=1

βiz
2
i ,

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(8.22)

or equivalently,

SᵀAS = In×n, SᵀBS = diag (β1, β2, ..., βn) . (8.23)

Proof. Let TA transform A to the diagonal form, namely,

T
ᵀ
A ATA = diag (α1, α2, ..., αn) := 	A,

with α1 > 0 (i = 1, ..., n). Note that this transformation exists by the spectral theorem
and is orthogonal, i.e.,

T
ᵀ
A = T −1

A .

Then, defining 	
1/2
A such that

	A = 	
1/2
A 	

1/2
A , 	

1/2
A = diag

(√
α1,

√
α2, ...,

√
αn

)

,

one has
[

	
−1/2
A T

ᵀ
1

]

A
[

T1	
−1/2
A

]

= In×n.

Hence,

B̃ :=
[

	
−1/2
A T

ᵀ
1

]

B
[

T1	
−1/2
A

]

is a symmetric matrix, i.e., B̃ = B̃ᵀ. Let T
B̃

be a unitary matrix transforming B̃ to the
diagonal form, that is,

T
ᵀ
B̃

B̃T
B̃

= diag
(

β̃1, β̃2, ..., β̃n

)

:= 	
B̃
.
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Then the transformation S defined by

S :=
[

TA	
−1/2
A

]

T
B̃

exactly realizes (8.22) since

T ᵀAT = T
ᵀ
B̃

([

	
−1/2
A T

ᵀ
1

]

A
[

T1	
−1/2
A

])

T
B̃

= T
ᵀ
B̃

T
B̃

= In×n.

Define normal or main coordinates by

q̃ := S−1q, q = Sq̃. (8.24)

Applying the transformation S to (8.13), we get

AS ¨̃q + CSq̃ = 0, (8.25)

which, when premultiplied by ST , results in

ST AS ¨̃q + ST CSq̃ = 0,

with ST AS = In×n and ST CS = R, that is, the dynamics of q̃ is governed by

¨̃q +

⎡

⎢
⎢
⎢
⎣

r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...

0 0 · · · rn

⎤

⎥
⎥
⎥
⎦

q̃ = 0, ri = β̃i (i = 1, ..., n) ,

which represents the following decoupled system of n ordinary second order differen-
tial equations:

¨̃qi + ri q̃i = 0, i = 1, ..., n. (8.26)

Propose

q̃i = uie
λi t (8.27)

as a solution for (8.26) with λi ∈ R and 0 �= ui ∈ R (constants to be determined),
which leads to the relationship

ui

(

λ2
i + ri

)

eλi t = 0,

from where it follows that λi must comply with

λ2
i + ri = 0,
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that is,

λ
(1)
i = −√−ri , λ

(2)
i = √−ri .

This, together with (8.27), leads to the general solution of (8.26) in the form

q̃i (t) = ui

(

γ
(1)
i e−√−ri t + γ

(2)
i e

√−ri t
)

(8.28)

with constants γ
(1)
i and γ

(2)
i that depend on the initial conditions.

The dynamics of q̃i depends on the sign of ri , as shown in the following.

(a) If ri < 0, then (8.28) takes the form

q̃i (t) = ui

(

γ
(1)
i e−√|ri |t + γ

(2)
i e

√|ri |t
)

,

and it is concluded that the corresponding solution is not bounded, exponentially
increasing.

(b) If ri = 0, then (8.28) takes the form

q̃i (t) = ui

(

γ
(1)
i + γ

(2)
i t

)

, (8.29)

and again it is concluded that the solution obtained is not bounded, linearly
increasing.

(c) If ri > 0, then (8.28) takes the form

q̃i (t) = ui

(

γ
(1)
i e−j

√
ri t + γ

(2)
i ej

√
ri t
)

, j := √−1,

or, in view of the relationship

e±jα = cosα ± j sinα,

it follows that

q̃i (t) = uiγi sin
(√

ri t + ϕi

)

,

from which it is concluded that the corresponding solution is a bounded oscilla-
tion with the frequency

√
ri .

Conclusion 8.1. From the previous discussion on the form of the solution (8.28) two
facts emerge:

(a) From the substitution of (8.28) in (8.24) it can be verified that, even if a certain
root λ2

i of (8.15) is present with multiplicity nk greater than one, the solution q
does not contain polynomials of t , except in the case in which the root λ2 = 0
appears, in which the first degree polynomial (8.29) is presented.1

1 This note is related with the so-called “Lagrange error.” Lagrange thought that oscillations may increase
as polynomials of the order nk − 1.
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(b) To have oscillatory movements, we should have λ2 = −μ2, with 0 < μ ∈ R.
So, for this case the characteristic equation and polynomial associated with the
solution are

(

−μ2A + C
)

u = 0, det
(

−μ2A + C
)

= 0, 0 < μ ∈ R. (8.30)

Note that if 0 ≤ μ ∈ R is considered, these equations serve for both negative λ2 and
null roots.

8.3 Several examples of oscillation analysis

In this section several examples are developed in order to show some aspects of the
results obtained.

8.3.1 Three masses joined by springs in circular dynamics

In Fig. 8.1 a ring is shown on which three mass bodies m are connected in series by
stiffness springs k. The movement is frictionless and the masses are not subject to
any gravitational field. Determine the general solution for displacements as a function
of initial conditions. Since the system is conservative, the theory developed in the
previous section can be applied. Clearly, three generalized coordinates are required.
They may be selected as the displacements of the masses with respect to a certain
position in which the springs are not deformed. The potential energy is expressed by

V (q) = k

2

[

(q1 − q3)
2 + (q2 − q1)

2 + (q3 − q2)
2
]

,

Figure 8.1 Three masses joined by springs in circular dynamics.
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from which it follows that

∇qV (q) = k

⎡

⎢
⎣

2q1 − q2 − q3

−q1 + 2q2 − q3

−q1 − q2 + 2q3

⎤

⎥
⎦ , (8.31)

and hence, by the condition ∇qV (q∗) = 0,

q∗ = 0.

This equilibrium may be unstable, because for the initial conditions

q (0) = 0, q̇ (0) = δ
[

1 1 1
]T

, δ > 0,

we have ‖q (t)‖ → ∞ when t → ∞. From (8.31) we have

C := ∇2
qV (0) = k

⎡

⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦ .

On the other hand, the kinetic energy is

T = 1

2
m
(

q̇2
1 + q̇2

2 + q̇2
3

)

= 1

2
mq̇T In×nq̇,

where In×n is the identity matrix of order 3. Then by (8.5) it follows that

A := mIn×n.

By (8.15), the λ2 ∈ R values of the system in question satisfy the following equation:

det
(

λ2A + C
)

= 0,

that is,

det

⎡

⎢
⎣

2k + λ2m −k −k

−k 2k + λ2m −k

−k −k 2k + λ2m

⎤

⎥
⎦= 0,

or equivalently,

λ2

[

9

(
k

m

)2

+ 6

(
k

m

)

λ2 + λ4

]

= 0,

where the following solutions are obtained:

λ2
1 = 0, λ2

2 = −3
k

m
,
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with multiplicities 1 and 2, respectively. The fact that λ2
1 = 0 shows that q∗ = 0 is

unstable. From (8.14) the corresponding amplitude vectors are obtained. The one of
λ2

1 is given by

Cu1 = k

⎡

⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦u1 = 0,

or by the following system of two simultaneous equations:

2u1,1 − u1,2 − u1,3 = 0,

−u1,1 + 2u1,2 − u1,3 = 0.

If u1,3 is taken as a free parameter, the above equations are equivalent to

[

2 −1
−1 2

][

u1,1
u1,2

]

= u1,3

[

1
1

]

,

from which

[

u1,1
u1,2

]

= u1,3

[

2 −1
−1 2

]−1 [1
1

]

= u1,3

[

1
1

]

,

and if u1,3 = 1 is chosen, we get

[

u1,1
u1,2

]

=
[

1
1

]

.

For the determination of the amplitude vectors of u(1)
2 and u(2)

2 , associated with λ2
2 =

−3
k

m
, the results of the previous section can be used. Since A = mIn×n, it follows

that these vectors must meet (see (8.32)) the following conditions:

(

u1,u(1)
2

)

= 0,
(

u1,u(2)
2

)

= 0.

Moreover, u(1)
2 and u(2)

2 must be independent, which is achieved if they are orthogonal:

(

u(1)
1 ,u(2)

2

)

= 0.

These conditions translate into the following system of simultaneous equations:

u1,1u
(1)
2,1 + u1,2u

(1)
2,2 + u1,3u

(1)
2,3 = 0,

u1,1u
(2)
2,1 + u1,2u

(2)
2,2 + u1,3u

(2)
2,3 = 0,

u
(1)
2,1u

(2)
2,1 + u

(1)
2,2u

(2)
2,2 + u

(1)
2,3u

(2)
2,3 = 0,

⎫

⎪⎪⎬

⎪⎪⎭
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which, in view of how u1 was chosen, are satisfied if

u(1)
2 = [

1 0 −1
]T

, u(2)
2 = [

1 −2 1
]T

,

and consequently, the general solution for the mass system considered is given by

q (t) =
(

γ
(1)
1 + γ

(2)
1 t

)

⎡

⎣

1
1
1

⎤

⎦+

γ2 sin

(√

3
k

m
t + ϕ2

)⎡

⎣

1
0

−1

⎤

⎦+ γ3 sin

(√

3
k

m
t + ϕ2

)⎡

⎣

1
−2
1

⎤

⎦ ,

where γ
(1)
1 , γ

(2)
1 , γ2, γ3, ϕ1, ϕ2 ∈ R are constants that depend on the initial conditions.

Remark 8.1. The components of the different vectors u, obtained in the previous
example, represent all the directions of movement that the masses of the system can
present:

– u1 corresponds to the movement in which all the masses move in the same direc-
tion;

– in u(1)
2 one mass is stopped and the other two move in opposite directions;

– finally, u(2)
2 denotes two masses moving in the same direction and the other in

contradiction and with double magnitude.

When the set of masses, as in the preceding example, has similarity in movement,
vectors can be determined by inspection, without resolving to Eq. (8.14).

8.3.2 Three masses joined by springs with dynamics on a
straight line

A three-mass system is joined by stiffness springs k as shown in Fig. 8.2. Suppose
that gravity forces do not act on this system and that the movement occurs without
restrictions on the straight line indicated. Determine (if possible by the inspection
without resolving equations (8.30)) the law that the movements of the masses follow.
The kinetic energy of this system is

T = 1

2
m
(

q̇2
1 + 2q̇2

2 + q̇2
3

)

= 1

2
mq̇T

⎡

⎣

1 0 0
0 2 0
0 0 1

⎤

⎦ q̇,

Figure 8.2 Three masses joined by springs with dynamics on a line.
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from which it follows that

A := m

⎡

⎣

1 0 0
0 2 0
0 0 1

⎤

⎦ , (8.32)

while the potential energy has as the expression

V (q) = k

2

[

(q2 − q1)
2 + (q3 − q2)

2
]

,

such that

∇qV (q) = k

⎡

⎣

q1 − q2
−q1 + 2q2 − q3
−q1 − q2 + 2q3

⎤

⎦= k

⎡

⎣

1 −1 0
−1 2 −1
0 −1 1

⎤

⎦q,

implying that

q∗ = 0.

It is an equilibrium, which is not stable because for the initial conditions

q (0) = 0, q̇ (0) = δ
[

1 1 1
]T

, δ > 0.

Indeed, in this case ‖q (t)‖ → ∞ when t → ∞. We also have

C := ∇2
qV (0) = k

⎡

⎣

1 −1 0
−1 2 −1
0 −1 1

⎤

⎦ .

Upon inspection it is concluded that two of the amplitude vectors are

u1 =
⎡

⎣

1
1
1

⎤

⎦ , u2 =
⎡

⎣

1
0

−1

⎤

⎦ , (8.33)

which are orthogonal with respect to the matrix A that appears in (8.32) and must be
orthogonal to u3 with respect to the same matrix A. Let it be u3 = (

α β γ
)ᵀ

. Then
the following simultaneous equations must be satisfied:

(u1,Au3) = m(α + 2β + γ ) = 0,

(u2,Au3) = m(α − γ ) = 0,

}

whose solution results in

α = γ, β = −γ,
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and if γ = 1 is chosen, then

u3 = (

1 −1 1
)ᵀ

.

Using (8.16), we get

λ2
j = −

(

uj ,Cuj

)

(

uj ,Auj

) , i = 1,2,3.

So,

λ2
1 = 0, λ2

2 = − k

m
, λ2

3 = −2k

m
,

and therefore, the general solution (oscillation) is

q (t) =
(

γ
(1)
1 + γ

(2)
1 t

)

⎡

⎣

1
1
1

⎤

⎦+

k

m
γ2 sin

(√

k

m
t + ϕ2

)⎡

⎣

1
0

−1

⎤

⎦+ γ3 sin

(√

2k

m
t + ϕ3

)⎡

⎣

1
−1
1

⎤

⎦ .

8.3.3 Four spring-bound masses with restricted linear dynamics

A system of four masses m, joined by stiffness springs k, is shown in Fig. 8.3. Deter-
mine the expression of mass displacements, considering that they are not subject to
gravitational forces.

Figure 8.3 Four spring-bound masses with restricted linear dynamics.

Let the generalized coordinates be the displacements of the masses with respect to
their position in which the springs are relaxed. The kinetic energy is given by

T (q̇) = 1

2
m
(

q̇2
1 + q̇2

2 + q̇2
3 + q̇2

4

)

= 1

2
mq̇T In×nq̇,

which is why

∇2T (q̇) = A := mIn×n. (8.34)

On the other hand, the potential energy has the expression

V (q) = k

2

[

q2
1 + (q2 − q1)

2 + (q3 − q2)
2 + (q4 − q3)

2 + q2
4

]

,
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so that

∇qV (q) = k

⎡

⎢
⎢
⎢
⎣

2q1 − q2

−q1 + 2q2 − q3

−q2 + 2q3 − q4

−q3 + 2q4

⎤

⎥
⎥
⎥
⎦

= k

⎡

⎢
⎢
⎢
⎣

2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎤

⎥
⎥
⎥
⎦

q,

implying

q∗ = 0,

which is stable, since q∗ is a point that minimizes V (q) with

C := ∇2
qV (0) = k

⎡

⎢
⎢
⎢
⎣

2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎤

⎥
⎥
⎥
⎦

> 0.

Since not all the masses in the system of Fig. 8.3 have the same freedom of movement,
it is not possible in advance to know the amplitude vectors by inspection. With the
obtained matrices A and C we find the equation

det
(

λ2A + C
)

= 0,

which results in

det

⎡

⎢
⎢
⎢
⎣

2k + mλ2 −k 0 0

−k 2k + mλ2 −k 0

0 −k 2k + mλ2 −k

0 0 −k 2k + mλ2

⎤

⎥
⎥
⎥
⎦

= 0,

or equivalently,

5

(
k

m

)4

+ 20

(
k

m

)3

λ + 21

(
k

m

)2

λ2 + 8
k

m
λ3 + λ4 = 0,

whose solutions are

λ2
1 = − k

2m

(

5 − √
5
)

, λ2
2 = − k

2m

(

5 + √
5
)

,

λ2
3 = − k

2m

(

3 − √
5
)

, λ2
4 = − k

2m

(

3 + √
5
)

.
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The solutions obtained for the corresponding amplitude vectors are as follows:

u1 =

⎡

⎢
⎢
⎢
⎣

−2

1 − √
5

−1 + √
5

2

⎤

⎥
⎥
⎥
⎦

, u2 =

⎡

⎢
⎢
⎢
⎣

−2

1 + √
5

−1 − √
5

2

⎤

⎥
⎥
⎥
⎦

,

u3 =

⎡

⎢
⎢
⎢
⎣

2

1 + √
5

1 + √
5

2

⎤

⎥
⎥
⎥
⎦

, u4 =

⎡

⎢
⎢
⎢
⎣

2

1 − √
5

1 − √
5

2

⎤

⎥
⎥
⎥
⎦

.

Therefore, the sought expression is

q (t) = γ1 sin

(√

k

2m

(

5 − √
5
)

t + ϕ1

)

⎡

⎢
⎢
⎢
⎣

−2

1 − √
5

−1 + √
5

2

⎤

⎥
⎥
⎥
⎦

+

γ2 sin

(√

k

2m

(

5 + √
5
)

t + ϕ2

)

⎡

⎢
⎢
⎢
⎣

−2

1 + √
5

−1 − √
5

2

⎤

⎥
⎥
⎥
⎦

+

γ3 sin

(√

k

2m

(

3 − √
5
)

t + ϕ3

)

⎡

⎢
⎢
⎢
⎣

2

1 + √
5

1 + √
5

2

⎤

⎥
⎥
⎥
⎦

+

γ4 sin

(√

k

2m

(

3 + √
5
)

t + ϕ4

)

⎡

⎢
⎢
⎢
⎣

2

1 − √
5

1 − √
5

2

⎤

⎥
⎥
⎥
⎦

.

8.3.4 Three identical pendula held by springs

Let us obtain the expressions of mass movements for the system of three identical
pendula shown in Fig. 8.4. The pendula have mass m and are held by stiffness springs k

that do not undergo deformation when all pendula are vertical. Consider as generalized
coordinates the angular displacements of the arms of the pendula with respect to the
vertical, that is,

q := (

ϕ1 ϕ2 ϕ3
)ᵀ

.
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Figure 8.4 Three identical pendula held by springs.

The kinetic energy is given by

T (q̇) = 1

2
ml2

(

q̇2
1 + q̇2

2 + q̇2
3

)

= 1

2
ml2q̇T In×nq̇.

That is why

A := ml2In×n.

The potential energy is

V (q) = kl2

8

[

(sinq2 − sinq1)
2 + (sinq3 − sinq2)

2
]

− mgl

3
∑

i=1

cosqi,

so that

∇qV = kl2

4

⎡

⎢
⎣

(sinq1 − sinq2) cosq1

(− sinq1 + 2 sinq2 − sinq3) cosq2

(− sinq2 + sinq3) cosq3

⎤

⎥
⎦+ mgl

⎡

⎢
⎣

sinq1

sinq2

sinq3

⎤

⎥
⎦ ,

implying that

q∗ = 0,

which is stable, since q∗ is a point that minimizes V with

C := ∇2
qV (0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

kl2

4
+ mgl −kl2

4
0

−kl2

4

kl2

2
+ mgl −kl2

4

0 −kl2

4

kl2

4
+ mgl

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0.

From the inspection analysis of possible movements we have as amplitude vectors

u1 =
⎡

⎣

1
1
1

⎤

⎦ , u2 =
⎡

⎣

1
0

−1

⎤

⎦ ,
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which, as easily verified, are orthogonal with respect to A and must be orthogonal
with respect to this same matrix, that is, if

u3 = (

α β γ
)ᵀ

,

then the following equations must be satisfied:

(u1,u3) = α + β + γ = 0,

(u2,u3) = α − γ = 0.

Their solution, if γ is chosen as the free parameter, is

α = γ, β = −2γ.

Particularly, if γ = −1, then

u3 = (−1 2 −1
)ᵀ

.

Given that

λ2
j = −

(

uj ,Cuj

)

(

uj ,Auj

) , i = 1, ...,3,

we get

λ2
1 = −g

l
, λ2

2 = −kl + 4mg

4ml
, λ2

3 = −3kl + 4mg

4ml
.

Therefore, it is concluded that

q (t) = γ1 sin

(√

g

l
t + ϕ1

)
⎡

⎣

1
1
1

⎤

⎦+ γ2 sin

(√

kl + 4mg

4ml
t + ϕ2

)⎡

⎣

1
0

−1

⎤

⎦+

γ3 sin

(√

3kl + 4mg

4ml
t + ϕ3

)⎡

⎣

−1
2

−1

⎤

⎦ .

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

8.3.5 Four-loop LC circuits

Here we will determine the law followed by load movements in the circuit shown in
Fig. 8.5. Consider as generalized coordinates

qj (t) := qj (0) +
∫ t

τ=0
ij (τ ) dτ, j = 1, ...,4,

where ij denotes the current flowing through the j -th loop. From the table of analogies
in Chapter 6 we have, on the one hand,

T (q̇) = 1

2
L
(

q̇2
1 + q̇2

2 + q̇2
3 + q̇2

4

)

= 1

2
Lq̇T In×nq̇, (8.35)
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Figure 8.5 Four-loop LC circuit.

so that

A = ∇2T (q̇) = LIn×n,

and, on the other hand,

V (q) = 1

2C

[

(q1 − q2)
2 + (q2 − q3)

2 + (q3 − q4)
2 + (q4 − q1)

2
]

. (8.36)

Hence,

∇qV (q) = 1

C

⎡

⎢
⎢
⎢
⎣

2q1 − q2 − q4

−q1 + 2q2 − q3

−q2 + 2q3 − q4

−q1 − q3 + 2q4

⎤

⎥
⎥
⎥
⎦

= 1

C

⎡

⎢
⎢
⎢
⎣

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

⎤

⎥
⎥
⎥
⎦

q,

implying

q∗ = 0,

which is not stable, since if the four initial currents are non-zero, equal, and in the
same direction, according to Fig. 8.5, they remain so indefinitely. Therefore,

C := ∇2
qV (0) = 1

C

⎡

⎢
⎢
⎢
⎣

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

⎤

⎥
⎥
⎥
⎦

.

By inspection, it is seen that the first three amplitude vectors can be chosen as

u1 =

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

, u2 =

⎡

⎢
⎢
⎣

−1
1

−1
1

⎤

⎥
⎥
⎦

, u3 =

⎡

⎢
⎢
⎣

1
1

−1
−1

⎤

⎥
⎥
⎦

,
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which, as easily verified, are orthogonal with respect to A and must be orthogonal
with respect to the same matrix. If

u4 = (

α β γ δ
)ᵀ

,

then the following simultaneous equations must be satisfied:

(u1,u4) = α + β + γ + δ = 0,

(u2,u4) = −α + β − γ + δ = 0,

(u3,u4) = α + β − γ − δ = 0,

⎫

⎪⎬

⎪⎭

whose solution is

α = δ, β = −δ, γ = −δ,

and if δ = 1 is chosen, then

u4 = (

1 −1 −1 1
)ᵀ

.

With the vectors obtained and since

λ2
j = −

(

uj ,Cuj

)

(

uj ,Auj

) , i = 1, ...,4,

it follows that

λ2
1 = 0, λ2

2 = − 4

LC
, λ2

3 = − 2

LC
, λ2

4 = − 2

LC
.

Accordingly, we may conclude that

q (t) =
(

γ
(1)
1 + γ

(2)
1 t

)

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

+ γ2 sin

(

2

√

1

LC
t + ϕ2

)

⎡

⎢
⎢
⎣

−1
1

−1
1

⎤

⎥
⎥
⎦

+

γ3 sin

(√

2

LC
t + ϕ3

)

⎡

⎢
⎢
⎣

1
1

−1
−1

⎤

⎥
⎥
⎦

+ γ4 sin

(√

2

LC
t + ϕ4

)

⎡

⎢
⎢
⎣

1
−1
−1
1

⎤

⎥
⎥
⎦

.

8.3.6 Finding one polynomial root using other known roots

The following example may be useful for obtaining a root of the characteristic poly-
nomial in (8.30).

Suppose the values detA and detC are known and that

0 < μ2
1,μ

2
2, · · ·,μ2

n−1 (8.37)
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are solutions of the equation

det
(

−μ2A + C
)

= 0 (8.38)

in (8.30). The unknown root is given by

μ2
n = 1

μ2
1μ

2
2 · · ·μ2

n−1

detC

detA
. (8.39)

Let us prove this. First, three necessary results from the matrix theory are required:

1. If M1,M2 ∈ Rn×n, then

det (M1M2) = det (M1)det (M2) . (8.40)

2. Let M ∈ Rn×n be such that det (M) �= 0. Then

det
(

M−1
)

= 1

det (M)
.

3. The set of {βi}ni=1 of the eigenvalues of a matrix M ∈ Rn×n are given by the
solutions of the equation

det (M − βIn×n) = 0

and they comply with

det (M) =
n
∏

i=1

βi.

Since A > 0 (and hence it is invertible), by (8.40) we have

det
(

−μ2A + C
)

= det
[

A
(

−μ2I + A−1C
)]

=
det (A)det

(

−μ2I + A−1C
)

.

So (8.38) is true if and only if

det
(

−μ2I + A−1C
)

= 0,

from which it follows that the solutions of (8.37) are the eigenvalues of the A−1C

matrix. But in view of the three results just stated,

n
∏

i=1

μ2
i = det

(

A−1C
)

= det
(

A−1
)

det (C) = det (C)

det (A)
,

which implies (8.39).
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8.3.7 Hint: how to resolve analytically cubic equations

In the following development a technique that is useful for the resolution of character-
istic equations is proposed to find the roots (which may be complex) of polynomials
of the third degree. Suppose we want to find the solutions of the equation

ax3 + bx2 + cx + d = 0 (8.41)

with a, b, c, d ∈ R and a �= 0. With the representation

x := k + ly, k, l ∈ R,

(8.41) may be rewritten with respect to y as

py3 + qy2 + ry + s = 0, (8.42)

where

p = al3, q = 3akl2 + bl2,

r = 3ak2l + 2bkl + cl, s = ak3 + bk2 + ck + d.

Selecting

l = 1

a1/3
, k = − b

3a
,

we obtain

p = 1, q = 0.

Then (8.42) becomes

y3 + ry + s = 0, (8.43)

with

r = 1

a1/3

(

c − b2

3a

)

and

s = 2b3

27a2
− c

b

3a
+ d.

Eq. (8.43) may be rewritten as

y3 = −ry − s. (8.44)

Represent now y as

y := u + v, u, v ∈ R.
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Then we have

y3 = u3 + 3uv (u + v) + v3 = u3 + 3uvy + v3. (8.45)

Comparing (8.44) and (8.45) we conclude that

3uv = −r,

u3 + v3 = −s.

}

From the first equation above, assuming that v �= 0, we have

u = − r

3v
,

which substituted in the second equation gives

−
( r

3v

)3 + v3 + s = 0.

Defining

z := v3,

it follows that

z2 + sz −
( r

3

)3 = 0.

The solutions of this last equation lead to the following solutions of (8.41):

z1,2 = − s

2
±
√

s2

4
+
( r

3

)3
,

v1,2 = 3
√

z1,2 = 3

√
√
√
√− s

2
±
√

s2

4
+
( r

3

)3
,

u1,2 = − r

3v1,2
,

y1,2 := u1,2 + v1,2 =

− r

3
3

√
√
√
√− s

2
±
√

s2

4
+
( r

3

)3

+ 3

√
√
√
√− s

2
±
√

s2

4
+
( r

3

)3
,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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and

x = k + ly =

− b

3a
+ 1

a1/3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3

√
√
√
√− s

2
±
√

s2

4
+
( r

3

)3 − r

3
3

√
√
√
√− s

2
±
√

s2

4
+
( r

3

)3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In general, in the last expression one real solution and two complex solutions, which
in particular may also be real, should be selected.

8.4 Exercises

Exercise 8.1. Show that if in the expressions of the kinetic and potential ener-
gies (8.13) of the conservative system the coefficients are constant and related as

cik = λaik, i, k = 1, ..., n, λ > 0,

then oscillations with only one frequency ω = √
λ are possible in this system.

Exercise 8.2. An inhomogeneous disk of radius R and mass M , the center of mass of
which is located at a distance a from its geometric center O, can roll without slipping
along the horizontal guide x (see Fig. 8.6).The moment of inertia of the disk relative
to the axis perpendicular to its plane and passing through the center of mass is equal
to J . Show that small oscillations of the system near a stable equilibrium are given by
the formula

θ (t) = θ0 cosωt + θ̇0

ω
sinωt,

Figure 8.6 An inhomogeneous disk rolling without slipping along the horizontal guide.
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with

ω =
√

Mga

M (R − a)2 + J
.

Exercise 8.3. A double mathematical pendulum is suspended from a bar of mass M

that can move along a smooth horizontal guide (see Fig. 8.7), such that

m1 = m2 = M/2, l1 = l2 = l.

Figure 8.7 A double mathematical pendulum suspended from a bar.

Show that small oscillations of the system are described by the expression

⎛

⎜
⎝

x

lθ1

lθ2

⎞

⎟
⎠=

(

γ
(1)
1 + γ

(2)
2 t

)

⎛

⎝

1
0
0

⎞

⎠+ γ
(2)
1

⎛

⎝

1
−3
−2

⎞

⎠ sin

(√

g

l
t + γ

(2)
2

)

+

γ
(3)
1

⎛

⎝

1
−4
4

⎞

⎠ sin

(

2

√

g

l
t + γ

(3)
2

)

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Exercise 8.4. A homogeneous elliptical cylinder can roll without slipping on a hori-
zontal plane (see Fig. 8.8).The major and minor semi-axes of the ellipse in the section
of the cylinder are equal to a and b, respectively. Show that the period T of small
oscillations of the cylinder near a stable equilibrium is

T = π

√

b

g

a2 + b2

a2 − b2
.

Exercise 8.5. Show that the law of change in time of charges in the electric circuit,
shown in Fig. 8.9, is described by the expression
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Figure 8.8 A homogeneous elliptical cylinder rolling without slipping on a horizontal plane.

Figure 8.9 Electric circuit.

qi (t) =
n
∑

j=1

Aj sin

(
i (2j − 1)

2n + 1
π

)

sin

(
2t√
LC

(
i (2j − 1)

2n + 1
π

)

+ αj

)

,

where Aj and αj , some constants, depend on the initial conditions.
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This chapter continues the study of the linear systems obtained from the lineariza-
tion process of the Lagrange equations, which was introduced in the previous chapter.
This continuation covers two aspects: first, the consideration of non-potential time-
dependent forces allows the use of the important Fourier transformation tool, which
leads to the consideration of the system’s frequency response; second, dissipative sys-
tems are considered, which generalize those of the conservative type and allow the
introduction of the concept of asymptotically stable equilibrium as an extension of
the previously discussed idea of equilibrium. The algebraic and geometric criteria of
asymptotic stability are considered in detail. The polynomial robust stability analysis
is also presented.

9.1 Models governed by second order differential
equations

The main objective of this chapter is the study of the solutions of the following type
of equations:

Aq̈ + Bq̇ + Cq = f (t) , (9.1)
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where q ∈ Rn and A,B,C ∈ Rn×n are constant matrices and the function f : [0,∞) →
Rn characterizes an external input (or perturbation) of the system under the consider-
ation.

Remark 9.1. Through a development similar to that followed in Chapter 8 if

‖�q (t)‖ � 1, ‖�q̇ (t)‖ � 1

and the system under study is stationary and the potential energy is too, then the La-
grange equation can be approximated around the equilibrium q∗ = 0 by

Aq̈ + Bq̇ + Cq = Qnon-pot (t,q, q̇) − ∇�q̇Qnon-pot (0,0,0) , (9.2)

where

A := ∇2
qT (0,0) ,

B := −∇�q̇Qnon-pot (0,0,0) ,

C := ∇2
qV (0) ,

⎫

⎪⎪⎬

⎪⎪⎭

with A = AT > 0 and C = CT . Therefore, if Qnon-pot (t,q, q̇) does not depend on the
positions q and the speeds q̇, then (9.2) has the form (9.1).

9.2 Frequency response

One of the most powerful techniques for studying the response of forced linear sys-
tems with constant coefficients (of which (9.1) is only one subclass) is the Fourier
transformation.

Definition 9.1. Given the vector function g : [0,∞) → Rn, if

G (jω) = F {g} :=
∫ ∞

0
e−jωtg (t) dt, j := √−1,

exists, i.e., it is finite, the complex vector function G : 
 → C
n is referred to as the

Fourier transformation of g. From G (jω), the function g (t) is recovered by

g (t) = F−1 {G} := 1

2π

∫ ∞

−∞
ejωtG (jω)dω.

Reasonably, g (t) is called the inverse Fourier transformation of G (jω).

Remark 9.2. The following Dirichlet’s conditions guarantee the existence of F {g}:
1. integrability of g, that is, g has a countable number of discontinuities and ex-

tremes;
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2. absolute convergence of e−jωtg (t), namely,
∫ ∞

0

∥
∥
∥e

−jωtg (t)

∥
∥
∥dt < ∞,

which, given that
∥
∥
∥e

−jωtg (t)

∥
∥
∥=

∣
∣
∣e

−jωt
∣
∣
∣‖g (t)‖

and since
∣
∣
∣e

−jωt
∣
∣
∣= 1,

is satisfied if
∫ ∞

0
‖g (t)‖dt < ∞,

that is, g is absolutely convergent, which implies that

g (t) → 0 if t → ∞, (9.3)

except some points {tk}k=1,2,..., where g (tk) �
k→∞ 0 and the set of such moments

is construed as the set of zero-measure on the time axis.

Two properties of the Fourier transform that will be necessary are listed below. The
test of the first is elementary and is omitted.

Property 1: Let g : [0,∞) → Rn and h : [0,∞) → Rn be functions with the Fourier
transformations F {g} and F {h}, respectively. Then the following property holds:

F {Ag + Bh} = AF {g} + BF {h} ,

where A ∈ Rn×n and B ∈ Rn×n are any constant matrices.
Property 2: If g : [0,∞) → Rn is differentiable and meets the conditions of Dirich-
let, then F {ġ} exists and

F {ġ} = jωF {g} − g (0) . (9.4)

Proof. By the definition

F {ġ} =
∫ ∞

0
e−jωt ġ (t) dt =

∫ ∞

0
e−jωtdg (t) ,

integration by parts leads to the following relation:

F {ġ} = e−jωtg (t)

∣
∣
∣

∞
0

+ jω

∫ ∞

0
e−jωtg (t) dt.

In view of (9.3) the property (9.4) follows.
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Remark 9.3. By an induction process it is concluded that if g is k times differentiable
and F (g) exists, then F

{

g(k)
}

exists too and it is equal to

F

{

g(k)
}

= (jω)k F {g} − (jω)k−1 g (0) − · · · − jωg(k−1) (0) − g(k−1) (0) .

Definition 9.2. Consider the input-output system shown in Fig. 9.1, where

f : [0,∞) → Rk, q : [0,∞) → Rn,

Figure 9.1 Input-output system.

and

H (jω) :C →C
k.

The matrix H (jω) is called the frequency characteristic matrix if it connects the
Fourier transformations F {q (t)} and F {f (t)} of q (t) and f (t) as

F {q (t)} = H (jω)F {f (t)}
with zero initial conditions.

Remark 9.4. The component

Hrs (jω) , r = 1, ..., n, s = 1, ..., k,

of the matrix H (jω) matches the entrance fs (t) and the exit qr (t). In particular, if

fs (t) = sin (ωt) and fi (t) = 0 ∀i �= s,

then

qr (t) = |Hrs (jω)| sin (ωt + argHrs (jω)) ,

that is, |Hrs (jω)| is the amplification and argHrs (jω) is the phase shift of the signal
qr (t) with respect to fs (t), both relative to the frequency ω.

Lemma 9.1. For systems of the type (9.1), we have

H (jω) =
[

−ω2A + jωB + C
]−1

. (9.5)

Proof. The Fourier transform of (9.1) results in

F {Aq̈ + Bq̇ + Cq} = F {f (t)} ,
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and by the two properties mentioned above,

F {Aq̈ + Bq̇ + Cq} =
(jω)2 AF {q} + (jω)BF {q} + CF {q} =
[

−ω2A + jωB + C
]

F {q, }

⎫

⎪⎪⎬

⎪⎪⎭

from which (9.5) follows.

9.3 Examples

Below are some examples that make use of the results obtained.

9.3.1 Three-variable systems

Example 9.1. Consider the system described by the following set of equations:

ẋ = −2x + y − z + f1,

ẏ = x − y + f2,

ż = x + y − z + f3.

⎫

⎪⎬

⎪⎭

(9.6)

Let us find the frequency characteristic matrix and determine the effect of the input f3

on the output y. Let

q := [

x y z
]T

.

Then (9.6) may be rewritten as

q̇ = Dq + f, (9.7)

with

D :=
⎡

⎣

−2 1 −1
1 −1 0
1 1 −1

⎤

⎦ , f :=
⎡

⎣

f1
f2
f3

⎤

⎦ .

Applying the Fourier transformation to (9.7), we get

(jωI3×3 − D)F {q} = F {f} .

Therefore

H (jω) = (jωI3×3 − D)−1 ,
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or, in the open format,

H (jω) =

⎡

⎢
⎣

(1 + jω)2 jω − (1 + jω)

1 + jω 3 − ω2 + j3ω −1

2 + jω 3 + jω 1 − ω2 + j3ω

⎤

⎥
⎦

3 − 4ω2 + j
(

5ω − ω3
) . (9.8)

So, the influence of the input f3 on y is described by

H23 (jω) = 1

−3 + 4ω2 − j
(

5ω − ω3
) =

−3 + 4ω2 + j
(

5ω − ω3
)

(−3 + 4ω2
)2 + (

5ω − ω3
)2

.

The graphical representation of H23 (jω), with Re (H23 (jω)) on the horizontal axis,
Im (H23 (jω)) on the vertical axis, and ω as a parameter, is called amplitude-phase
characteristic (or Nyquist hodograph),1 and it is shown in Fig. 9.2. The point corre-
sponding to ω = 0 is the intersection with the horizontal axis at (−1/3) and hence the
positive branch of the hodograph moves (with increasing ω) to the positive part of the
vertical axis, while the negative one does so in the other direction symmetrically. The
magnitude of H23 (jω) is given by

|H23 (jω)| = 1
√
(−3 + 4ω2

)2 + (

5ω − ω3
)2

Figure 9.2 Hodograph of H23.

1 Amplitude-phase characteristic (Nyquist hodograph) – graphic display for all frequencies of the spectrum
of the relations of the output signal of a stationary linear system to the input, presented in a complex form.
The value of the segment from the origin to each point of the hodograph shows how many times at a given
frequency the output signal is greater than the input, and the phase shift between the signals is determined
by the angle to the said segment.



Linear systems of second order 279

Figure 9.3 Amplitude characteristic diagram of H23.

and its graphical representation as a function of ω, called amplitude characteristic
diagram, is shown in Fig. 9.3. Finally, in Fig. 9.4 the phase characteristic diagram
of H23 (jω) is depicted, which is given by

argH23 (jω) = arctan
ImH23 (jω)

ReH23 (jω)
= arctan

5ω − ω3

−3 + 4ω2
.

Figure 9.4 Phase characteristic diagram of H23.

9.3.2 Electrical circuit

Example 9.2. Consider the electrical circuit shown in Fig. 9.5. Obtain the amplitude-
phase characteristic matrix and determine the effect that the input e has on the output
uC2 shown. The first step is to obtain the dynamic equations of the system. To do that
they are considered as generalized coordinates,

qi (t) = qi (0) +
∫ t

τ=0
ii (τ ) dτ, i = 1,2,
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Figure 9.5 Electrical circuit.

where ii is the current flowing through the loop i. From the table of electromechanical
analogies of Chapter 6, for the kinetic and potential energies we have

T (q̇) = 1

2
L1q̇

2
1 + 1

2
L2q̇

2
2 ,

V (q) = 1

2C1
(q1 − q2)

2 + 1

2C2
q2

2 .

Therefore

L(q, q̇) = T (q̇) − V (q) = 1

2
L1q̇

2
1 + 1

2
L2q̇

2
2 − 1

2C1
(q1 − q2)

2 − 1

2C2
q2

2 ,

so the following Lagrange equations result:

L1q̈1 + 1

C1
(q1 − q2) = −R (q̇1 − q̇2) ,

L2q̈2 + 1

C1
(q2 − q1) + 1

C2
q2 = e − R (q̇2 − q̇1) ,

or equivalently,

[

L1 0
0 L2

]

q̈ + R

[

1 −1
−1 1

]

q̇ +
[ 1

C1
− 1

C1

− 1
C1

1
C1

+ 1
C2

]

q =
[

0
e

]

.

Then, in view of (9.5), it follows that

H (jω) =

⎡

⎢
⎢
⎣

−ω2L1 + jωR + 1

C1
−jωR − 1

C1

−jωR − 1

C1
−ω2L2 + jωR + 1

C1
+ 1

C2

⎤

⎥
⎥
⎦

−1

=
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1

a (ω)

[−ω2L2C1C2 + C2 + C1 + jωRC1C2 (1 + jωRC1)C2

(1 + jωRC1)C2
(−ω2L1C1 + 1 + jωRC1

)

C2

]

,

where

a (ω) := ω4L1C1L2C2 − ω2 (L1C1 + (L1 + L2)C2) + 1+
jωRC1

(

−ω2 (L1 + L2)C2 + 1
)

.

The output uC2 is obtained from q2 by the relation

uC2 = q2

C2
,

whose Fourier transform is

F
{

uC2

}= 1

C2
F {q2} .

But

F {q2} = H22 (jω)F {e} ,

which gives

F
{

uC2

}= H22 (jω)

C2
F {e} = −ω2L1C1 + 1 + jωRC1

a (ω)
F {e} ,

from which it follows that
H22 (jω)

C2
determines the effect that e has on uC2 , which

can be seen from the hodograph and the amplitude and phase characteristic graphs
once the values of the components present in the circuit are known.

9.3.3 Linear system with input delay

Example 9.3. Fig. 9.6 shows a linear system whose output is the input signal delayed
at the time τ . Let us obtain H (jω) of the system as well as the hodograph and the
amplitude and phase characteristic graphs. By Definition 9.2 we have

H (jω) = F {q (t)}
F {f (t)} ,

Figure 9.6 Linear system with input delay.
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where

F {q (t)} = F {f (t − τ)} .

Recall that

F {f (t − τ)} =
∫ ∞

0
e−jωtf (t − τ) dt.

Using the new variable

s := t − τ,

we have

F {f (t − τ)} =
∫ ∞

−τ

e−jω(s+τ)f (s) ds =

e−jωτ

(∫ 0

−τ

e−jωsf (s) ds +
∫ ∞

0
e−jωsf (s) ds

)

.

Considering that f (t) = 0 for any t < 0, we get

F {f (t − τ)} = e−jωτF {f (t)} ,

which implies

H (jω) = e−jωτ .

Fig. 9.7 shows the corresponding hodograph. The point for ω = 0 is at (1.0) and the
positive branch of ω describes a circle of radius 1 clockwise; the negative branch is
symmetric with respect to the horizontal axis. On the other hand, since

|H (jω)| ≡ 1

the amplitude characteristic diagram is constant and equals 1. Finally, as

argH (jω) = −ωτ,

the characteristic phase diagram is a line of slope −τ that passes through the origin.

9.3.4 Mechanical system with friction

Example 9.4. Fig. 9.8 shows a system of two masses m joined by stiffness springs k.
One of the masses is submerged in water, and both may be subject to the action of
external forces. Considering that the frictional force acting on the submerged mass
is proportional to its velocity, let us determine the frequency characteristic matrix. In
order to obtain the Lagrange equations, consider the generalized coordinates of the
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Figure 9.7 Hodograph of e−jωτ .

Figure 9.8 Mechanical system with friction.

displacements q1 and q2 of the upper and lower masses, respectively, in relation to the
positions in which the springs have their natural lengths. Then the following kinetic
and potential energies result:

T (q̇) = 1

2
m
(

q̇2
1 + q̇2

2

)

,

V (q) = 1

2
k
[

q2
1 + (q2 − q1)

2 + q2
2

]

− mg
(

2q1 + 2q1,0 + q2 + q2,0
)

,
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where q1,0 and q2,0 represent the natural lengths of the upper and intermediate springs,
respectively. It follows that the Lagrangian L has as an expression

L(q, q̇) = 1

2
m
(

q̇2
1 + q̇2

2

)

− 1

2
k
[

q2
1 + (q2 − q1)

2 + q2
2

]

+
mg

(

2q1 + 2q1,0 + q2 + q2,0
)

,

and therefore the Lagrange equations are given by

mq̈1 + k (2q1 − q2) − 2mg = f1,

mq̈2 + k (2q2 − q1) − mg = f2 − βq̇2,
(9.9)

where f1 and f2 are the external actions on the upper and lower masses, respectively,
and β is the coefficient of friction between the submerged mass and the water. In
vector notation, (9.9) may be rewritten as

m

[

1 0
0 1

]

q̈ + β

[

0 0
0 1

]

q̇ + k

[

2 −1
−1 2

]

q =
[

f1 + 2mg

f2 + mg

]

,

and therefore expression (9.5) becomes

H (jω) = 1

a (ω)

[

−ω2m + 2k + iωβ k

k −ω2m + 2k

]

,

with

a (ω) := ω4m2 − 4ω2mk + 3k2 + jβω
(

−ω2m + 2k
)

.

9.3.5 Electric circuit with variable elements

Example 9.5. A circuit with some variable-value elements is shown in Fig. 9.9. The
system output is uC1 , which is the voltage at capacitor C1. We need to determine the
values of C12 and L2 such that uC1 = 0 when

e = e0 sin (ω0t + ϕ) .

Figure 9.9 Electric circuit with variable elements.
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Defining the generalized coordinates as

qi (t) =
∫ t

τ=0
ii (τ ) dτ, i = 1,2,

where ii is the current in the i-th loop, from the table of electromagnetic analogies in
Chapter 6, the following kinetic and potential energies result:

T (q̇) = 1

2
L1q̇

2
1 + 1

2
L2q̇

2
2 ,

V (q) = 1

2C1
q2

1 + 1

2C12
(q1 − q2)

2 + 1

2C2
q2

2 ,

so

L(q, q̇) = T − V = 1

2
L1q̇

2
1 + 1

2
L2q̇

2
2−

1

2C1
q2

1 − 1

2C12
(q1 − q2)

2 − 1

2C2
q2

2 .

Therefore the Lagrange equations are given by

L1q̈1 + 1

C1
q1 + 1

C12
(q1 − q2) = e,

L2q̈2 + 1

C12
(q2 − q1) + 1

C2
q2 = 0,

or in vector format,

[

L1 0

0 L2

]

q̈ +

⎡

⎢
⎢
⎣

1

C1
+ 1

C12
− 1

C12

− 1

C12

1

C12
+ 1

C2

⎤

⎥
⎥
⎦

q =
[

e

0

]

.

The representation of (9.5) is

H (jω) =

⎡

⎢
⎢
⎣

−ω2L1 + 1

C1
+ 1

C12
− 1

C12

− 1

C12
−ω2L2 + 1

C12
+ 1

C2

⎤

⎥
⎥
⎦

−1

= 1

a (ω)

[−ω2L2 + 1
C12

+ 1
C2

1
C12

1
C12

−ω2L1 + 1
C1

+ 1
C12

]

,

where

a (ω) :=
(

−ω2L1 + 1

C1
+ 1

C12

)(

−ω2L2 + 1

C12
+ 1

C2

)

− 1

C2
12

.
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Since

uC1 = q1

C1
,

the Fourier transformation leads to

F
{

uC1

}= 1

C1
F {q1} .

But since

F {q1} = H11 (jω)F {e} ,

we get

F
{

uC1

}= H11 (jω)

C1
F {e} ,

from which it follows that uC1 = 0 if |H11 (jω0)| = 0, which gives

1

L2

(
1

C12
+ 1

C2

)

= ω2
0,

which is equivalent to the natural frequency of the second loop being equal to the
excitation frequency.

9.4 Asymptotic stability

9.4.1 Algebraic criteria

This subsection studies the stability of the equilibrium positions of (9.1). Of what has
been said in Chapter 7, it follows that q∗ is an equilibrium of (9.1) if and only if at
that point f ≡ 0, and therefore the system to study is reduced to

Aq̈ + Bq̇ + Cq = 0. (9.10)

In particular, we will focus on dissipative systems, that is, those in which

B �= 0.

From the definition of equilibrium, given in Chapter 7, (9.10) has only one equilibrium
point and it is

q∗ = 0. (9.11)

Definition 9.3. The equilibrium (9.11) is said to be asymptotically stable if it is stable
and

lim
t→∞‖q (t)‖ = 0, lim

t→∞‖q̇ (t)‖ = 0.
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Remark 9.5. Fig. 9.10 illustrates in a phase diagram the condition imposed at q∗ = 0
to be asymptotically stable.

Figure 9.10 Illustration of the asymptotic stability concept.

Remember from Chapter 8 that if {λk}Kk=1 are the different K roots of the charac-
teristic polynomial

p (λ) := det
(

λ2A + λB + C
)

, (9.12)

the general solution of (9.10) is given by

q (t) =
K
∑

k=1

qk (t) ,

with

qk (t) = eλkt

nk∑

i=1

nk,i∑

j=1

γk,i,j t
j−1pi (t)uk,i , (9.13)

where nk is the geometric multiplicity of the root λk and
{

uk,i

}nk

1=1 are the amplitude
vectors corresponding to this root and given by the expression

(λkA + λkB + C)uk = 0,

while pi (t) is a polynomial in t of degree less than nk,i , which is the number of
repetitions of the root λk corresponding to the vector of amplitudes uk,i .

General criterion of asymptotic stability

Lemma 9.2 (Asymptotic stability criterion). Let {λk}Kk=1 be the set of different roots
of p (λ). The equilibrium q∗ = 0 (9.10) is asymptotically stable if and only if

Re (λk) < 0 ∀k = 1, ...,K.

Proof. In view of the form (9.13), eλkt appears multiplying a polynomial and since

exp (λkt) = exp [(Re(λk) + j Im (λk)) t] =
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exp (j Im (λk) t) · exp (Re(λk)t) =
[cos (Im (λk) t) + j sin (Im (λk) t)] exp (Re(λk)t) .

The result follows trivially.

The previous theorem allows to translate the problem of the determination of the
stability of the system (9.10) to the qualification of the sign of the roots of the corre-
sponding characteristic polynomial. The following theorem allows us to go further.

Necessity condition of Stodola

Theorem 9.1 (Necessity condition: Stodola). If the equilibrium q∗ = 0 of (9.10) is
asymptotically stable, then all the coefficients of the characteristic polynomial p (λ)

are strictly positive.2

Proof. More generally, let {λi}mi=1 be the root set of the polynomial of degree m

p (λ) = λmρ0 + λm−1ρ1 + ... + ρm, ρi ∈ R,

or in the equivalent form

p (λ) = ρ0 (λ − λ1) (λ − λ2) · · · (λ − λm) . (9.14)

Suppose that p (λ) has nr real and nc complex roots, of which the latter appear in
conjugate pairs because p (λ) has real coefficients. Without loss of generality, suppose
that in (9.14) the first nr factors correspond to real roots. Then (9.14) can be rewritten
in the following form:

p (λ) = ρ0

nr∏

i=1

(λ − λi)

nc/2
∏

k=1

(λ − λk)
(

λ − λ̄k

)

, (9.15)

with

λi = −ui, i = 1, ..., nr ,

λk = −uk + jvk, k = 1, ..., nc/2,

λ̄k = −uk − jvk, k = 1, ..., nc/2,

where, by Lemma 9.2,

ui > 0, i = 1, ..., nr , and uk > 0, k = 1, ..., nc/2.

2 Aurel Boleslav Stodola (May 11, 1859–December 25, 1942) was a Slovak engineer, physicist, and in-
ventor. He was a pioneer in the area of technical thermodynamics and its applications and published his
book Die Dampfturbine (the steam turbine) in 1903. In addition to the thermodynamic issues involved
in turbine design the book discussed aspects of fluid flow, vibration, stress analysis of plates, shells, and
rotating discs, and stress concentrations at holes and fillets. Stodola was a professor of mechanical engi-
neering at the Swiss Polytechnical Institute (now ETH) in Zurich. He maintained friendly contact with
Albert Einstein. In 1892, Stodola founded the Laboratory for Energy Conversion.
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Then

p (λ) = ρ0

nr∏

i=1

(λ + ui)

nc/2
∏

k=1

(

λ2 + 2ukλ + u2
k + v2

k

)

,

which contains only factors with positive terms and in whose development only posi-
tive (non-zero) coefficients arise.

An immediate consequence is obtained.

Conclusion 9.1. If p (λ) has different sign coefficients or some of them are zero, then
the equilibrium q∗ = 0 of (9.10) is not asymptotically stable.

Based on the two previous results, some techniques are now presented to know the
sign of the real parts of a polynomial

p (λ) = λmρ0 + λm−1ρ1 + ... + ρm, 0 < ρi ∈ R, (9.16)

without their analytical finding.

The Routh–Hurwitz criterion

Definition 9.4. The matrix

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ1 ρ3 ρ5 ρ7 ρ9 · · · 0

ρ0 ρ2 ρ4 ρ6 ρ8 · · · 0

0 ρ1 ρ3 ρ5 ρ7 · · · 0

0 ρ0 ρ2 ρ4 ρ6 · · · 0

0 0 ρ1 ρ3 ρ5 · · · 0

0 0 ρ0 ρ2 ρ4
. . .

...
...

...
...

...
...

... ρm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rm×m

is called the Hurwitz matrix, associated with p (λ).

Definition 9.5. The polynomial p (λ) is called Hurwitz polynomial if

Re (λi) < 0, i = 1, ...,m.

The criterion that appears immediately without demonstration (the proof can be
found in (Poznyak, 2008)) allows to determine if a polynomial is Hurwitz.3

3 In control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary
and sufficient condition for the stability of a linear time-invariant (LTI) control system. The Routh test
is an efficient recursive algorithm that English mathematician Edward John Routh proposed in 1876 to
determine whether all the roots of the characteristic polynomial of a linear system have negative real parts.
German mathematician Adolf Hurwitz independently proposed in 1895 to arrange the coefficients of the
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Theorem 9.2 (The Routh–Hurwitz criterion). The polynomial p (λ) given in (9.16) is
Hurwitzian if and only if each principle minor of det (G) is strictly positive, that is,

mi > 0, i = 1, ..., n,

where

mi := det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ1 ρ3 ρ5 · · · 0
ρ0 ρ2 ρ4 · · · 0
0 ρ1 ρ3 · · · 0

0 ρ0 ρ2
. . .

...
...

...
...

... ρi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.17)

An example illustrates the above criterion.

Example 9.6. Let us determine if the polynomial

p(λ) = λ4 + 8λ3 + 18λ2 + 16λ + 5 = 0

is Hurwitz.
The corresponding Hurwitz matrix is

G =

⎡

⎢
⎢
⎣

8 16 0 0
1 18 5 0
0 8 16 0
0 1 18 5

⎤

⎥
⎥
⎦

,

from where the principle minors are

m1 := det [8] = 8 > 0,

m2 := det

[

8 16
1 18

]

= 128 > 0,

m3 := det

⎡

⎣

8 16 0
1 18 5
0 8 16

⎤

⎦= 1728 > 0,

m4 := det

⎡

⎢
⎢
⎣

8 16 0 0
1 18 5 0
0 8 16 0
0 1 18 5

⎤

⎥
⎥
⎦

= 8640 > 0.

Hence p (λ) is Hurwitz.

The Routh–Hurwitz criterion has a simpler formulation.

polynomial into a square matrix, called the Hurwitz matrix, and showed that the polynomial is stable if
and only if the sequence of determinants of its principal submatrices are all positive. The two procedures
are equivalent, with the Routh test providing a more efficient way to compute the Hurwitz determinants
than computing them directly.



Linear systems of second order 291

The Liénard–Chipart criterion

Theorem 9.3 (Liénard–Chipart criterion). The polynomial p (λ) given in (9.16) is
Hurwitz if and only if the following conditions are satisfied:

1. Condition on the coefficients:

ρi > 0 for all i = 1, ...,m.

2. Condition on the main minors of the determinant of the corresponding Hurwitz
matrix:

mi > 0 for all i = m − 1,m − 3,m − 5, . . . ,

with mi given in (9.17).

This criterion is illustrated by the following example.

Example 9.7. Given

p (λ) = λ5 + 3λ4 + αλ3 + λ2 + λ + 1, (9.18)

we need to find the values of α that guarantee that p (λ) is Hurwitzian.
Given that Hurwitz’s matrix is

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 1 1 0 0

1 α 1 0 0

0 3 1 1 0

0 1 α 1 0

0 0 3 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

two conditions on the main minors of the previous criterion are met:

m4 = det

⎡

⎢
⎢
⎢
⎣

3 1 1 0

1 α 1 0

0 3 1 1

0 1 α 1

⎤

⎥
⎥
⎥
⎦

= 4α − 3α2 − 5 > 0,

m2 = det

[

3 1

1 α

]

= 3α − 1 > 0.

However, since the equation

4α − 3α2 − 5 = 0

has as solutions

α = 2

3
± 1

3
i
√

11,
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it follows that there are no real values of α that provide the condition m4 < 0 and make
the polynomial p (λ) given in (9.18) Hurwitzian.

Example 9.8. Consider two dynamic systems

ẍ + ẋ + x − αy = 0,

ÿ + ẏ − βx + y = 0

}

(9.19)

and

ẍ + ẋ + x − αy = 0,

ẏ − βx + y = 0.

}

(9.20)

Let us calculate the values of the parameters α and β such that the corresponding
characteristic polynomials are Hurwitz.

a) Define the vector

q := [

x y
]ᵀ

. (9.21)

With (9.21), the system (9.19) may be rewritten as

[

1 0
0 1

]

q̈ +
[

1 0
0 1

]

q̇ +
[

1 −α

−β 1

]

q = 0,

so that

λ2A + λB + C =
[

λ2 + λ + 1 −α

−β λ2 + λ + 1

]

,

and its characteristic polynomial is

p (λ) = λ4 + 2λ3 + 3λ2 + 2λ + 1 − αβ. (9.22)

The Hurwitz matrix, corresponding to (9.22), is

G =

⎡

⎢
⎢
⎣

2 2 0 0
1 3 1 − αβ 0
0 2 2 0
0 1 3 1 − αβ

⎤

⎥
⎥
⎦

,

so that the condition of the Liénard–Chipart criterion gives on the one hand

1 − αβ > 0,

and on the other

m3 = 4 + 4αβ > 0,
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that is,

|αβ| < 1. (9.23)

In Fig. 9.11 the graphic representation of (9.23) corresponds to the area enclosed
by the hyperbolas shown.

Figure 9.11 Graphics illustrating the zone (9.23).

b) With the representation (9.21), the system (9.20) is rewritten as
[

1 0
0 0

]

q̈ +
[

1 0
0 1

]

q̇ +
[

1 −α

−β 1

]

q = 0,

so that

λ2A + λB + C =
[

λ2 + λ + 1 −α

−β λ + 1

]

,

with the characteristic polynomial

p (λ) = λ3 + 2λ2 + 2λ + 1 − αβ. (9.24)

The Hurwitz matrix corresponding to (9.24) is

G =
⎡

⎣

2 1 − αβ 0
1 2 0
0 2 1 − αβ

⎤

⎦ ,

and the Liénard–Chipart criterion is on the one hand

1 − αβ > 0,

and on the other

3 + αβ > 0,
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which implies

−3 < αβ < 1. (9.25)

The hyperbolas shown in Fig. 9.12 enclose the area that corresponds to (9.25).

Figure 9.12 Function graphics of the zone (9.25).

9.4.2 Geometric criteria of asymptotic stability

In addition to the analytical criteria to determine the quality of a polynomial of being
Hurwitzian, ones of geometric type have been developed. For the introduction to this
topic some observations are required.

Argument principle

Consider the representation

p (λ) = ρ0

m
∏

i=1

(λ − λi) (9.26)

of the polynomial (9.16). Suppose the roots of (9.26) comply with

Reλi �= 0, i = 1, ...,m.

Then it can be rewritten as

p (λ) = ρ0

l
∏

i=1

(λ − λi)

r
∏

k=1

(λ − λk) , (9.27)

where

l := number of roots of the negative real part,

r := number of roots of the positive real part.



Linear systems of second order 295

From the theory of complex numbers, remember that z ∈ C can be represented in
terms of its magnitude and its argument in the form

z = |z| ej arg z,

where arg z is the angle that the radius vector of z forms with the real axis, measured
counter-clockwise with the clockwise (positive direction). Moreover, for |z| < ∞ and
Re z �= 0, the complex function

f (jω) := jω − z = |jω − z| ej arg(jω−z)

is subject to the following change when the argument ω varies from −∞ up to ∞ (see
Fig. 9.13):

∞
�

ω=−∞ argf (jω) =
{

π, if Re z < 0,

−π, if Re z > 0.
(9.28)

Figure 9.13 f (jω) changes when the argument ω varies from −∞ up to ∞.

Lemma 9.3. The polynomial (9.27) complies with
∞
�

ω→∞ argp (jω) = (l − r)π. (9.29)

Proof. The evaluation of (9.27) implies

p (jω) = ρ0

l
∏

i=1

(jω − λi)

r
∏

k=1

(jω − λk) =

ρ0

m
∏

i=1

(|jω − λi |) exp j

(
l
∑

i=1

arg (jω − λi) +
r
∑

k=1

arg (jω − λk)

)

and by (9.28) the statement follows.

The previous Lemma 9.3 leads directly to the result that follows.
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Mikhailov criterion

Theorem 9.4 (Mikhailov criterion, 1938). The polynomial p (λ) of degree m, given
in (9.16), is Hurwitz if and only if the hodograph of p (λ) has counter-clockwise rota-
tion and passes exactly m quadrants without crossing the origin when ω goes from 0
to ∞.

Proof. By the definition p (λ) is Hurwitzian if and only if it has a representation (9.27)
with l = m. Then, by the previous lemma

∞
�

ω=∞ argp (jω) = mπ,

or, in view of the symmetry property,

∞
�

ω=0
argp (jω) = m

2
π.

A series of examples related to the Mikhailov criterion are included.

Example 9.9. Consider the polynomial

p (λ) = λ5 + 5λ4 + 10λ3 + 11λ2 + 7λ + 2. (9.30)

Let us determine, by geometric criteria, if it is Hurwitz. Defining

λ = jω

for (9.30) we have

P (jω) = jω5 + 5ω4 − j10ω3 − 11ω2 + j7ω + 2

= 5ω4 − 11ω2 + 2 + jω
(

ω4 − 10ω2 + 7
)

,

whose hodograph is shown in Fig. 9.14, of which Fig. 9.15 is a magnification. Due to
the shape of the hodograph obtained, it is concluded that the polynomial (9.30) passes
exactly five quadrants and, hence, it is Hurwitz.

Example 9.10. Suppose that a certain polynomial p (λ) is of degree m = 5 and that its
hodograph has the form given in Fig. 9.16. We need to determine l and r , the amounts
of roots with negative and positive real parts, respectively. Since the hodograph does
not cross the point (0,0), the polynomial p (λ) has no roots with null real parts, and
considering (9.29), it follows that the following two simultaneous equations must be
satisfied:

l + r = m = 5,

l − r = 3,

}
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Figure 9.14 Hodograph of p (jω).

Figure 9.15 Zoom of the hodograph of p (jω).

Figure 9.16 Hodograph of p (jω).
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which gives

l = 4, r = 1.

Example 9.11. Suppose that the hodograph given in Fig. 9.17 corresponds to a poly-
nomial p (λ) of degree m = 6. Let us calculate l, r , and n, the amounts of roots with
negative, positive, and null real parts, respectively.

Figure 9.17 Hodograph of p (jω).

Since the hodograph crosses the point (0,0), the polynomial p (λ) has roots with
null real parts, and since there is only one cross, which also does not occur for ω = 0,
there exists ω0 �= 0 such that

λi = jω0, λ̄i = −jω0

are the roots with a null real part of p(λ), that is, n = 2. So we have

l + r + n = m = 6,

l − r = 2,

n = 2,

⎫

⎪⎬

⎪⎭

which gives

l = 3, r = 1, n = 2.

Example 9.12. Using the Mikhailov criterion, obtain l, r , and n, the amounts of roots
with negative, positive, and null real parts, respectively, for the following polynomials:

a)

p(λ) = λ5 + 2λ4 + 2λ3 − 7λ2 − 44λ − 4, (9.31)

b)

p (λ) = λ4 + λ3 − 2λ2 + 4λ + 2. (9.32)

a) Taking λ = jω in (9.31) results in

p (jω) = 2ω4 + 7ω2 − 4 + jω
(

ω4 − 2ω2 − 44
)

,

whose hodograph is given in Fig. 9.18. Since the hodograph does not cross the point
(0,0), p (λ) has no roots with null real parts. So, by (9.29) the following equations are
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Figure 9.18 Hodograph of p (jω).

reached:

l + r = m = 5,

l − r = 3.

}

That is why

l = 4, r = 1, n = 0.

b) Taking λ = jω, the polynomial (9.32) may be written in the form

p (jω) = ω4 + 2ω2 + 2 + jω
(

−ω2 + 4
)

,

which hodograph is depicted in Fig. 9.19. Since the hodograph does not pass through
the point (0,0), p (λ) has no roots with null real parts. Then, by (9.29), the following
equations are reached:

l + r = m = 4,

l − r = 0,

}

implying

l = 2, r = 2.

Example 9.13. Given the polynomial

p (λ) = λ4 + λ3 + 4λ2 + 2λ + 3 + k, (9.33)

using the Mikhailov criterion, let us try to obtain l, r , and n, the amounts of roots with
negative, positive, and null real parts, respectively, based on the values of k.
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Figure 9.19 Hodograph of p (jω).

Taking λ = jω, (9.33) can be represented as

p (jω) = ω4 − 4ω2 + 3 + k + jω
(

−ω2 + 2
)

=
(

ω2 −
(

2 + √
1 − k

))(

ω2 −
(

2 − √
1 − k

))

+ jω
(

−ω2 + 2
)

.

Note that Imp (jω) = 0 when

ω = 0, ω = ±√
2.

This means that for ω ≥ 0 the hodograph crosses the real axis twice. On the other hand,
crosses with the imaginary axis depend on the value of k and several cases occur.

i) If k < −3, then the crosses with the imaginary axis occur when

ω1,2 = ±
√

2 + √
1 − k.

In particular, for ω ≥ 0 the hodograph crosses the imaginary axis once. In short, the
hodograph contains the crosses as in Table 9.1:

Table 9.1 Hodograph crosses for k < −3.

ω Cross Semi-axis
0 (3 + k,0) real negative√

2 (−1 + k,0) real negative
√

2 + √
1 − k

(

0,−
√

(1 − k)
(

2 + √
1 − k

)
)

imaginary negative

and has the form as in Fig. 9.20; that is why l = 3, r = 1, n = 0.
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Figure 9.20 Hodograph for the case k < −3.

ii) If k = −3, the crosses with the imaginary axis correspond to

ω1 = 0, ω1 = ±2.

In particular, for ω ≥ 0 the hodograph crosses the imaginary axis twice. Therefore, we
have the situation as in Table 9.2:

Table 9.2 Hodograph crosses for k = −3.

ω Cross Semi-axis
0 (0,0) origin√

2 (−4,0) real negative
2 (0,−4) imaginary negative

and the hodograph has the form as given in Fig. 9.21. Hence,

l = 3, r = 0, n = 1.

Figure 9.21 Hodograph of p (jω) for k = −3.
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iii) If −3 < k < 1, we have to cross the imaginary axis when

ω = ω1,2 = ±
√

2 − √
1 − k, ω = ω3,4 = ±

√

2 + √
1 − k,

and for ω ≥ 0, the hodograph crosses the imaginary axis twice. Table 9.3 summarizes
the crossroads of the hodograph with the axes,

Table 9.3 Hodograph crosses for −3 < k < 1.

ω Cross Semi-axis
0 (3 + k,0) real positive
√

2 − √
1 − k

(

0,

√

(1 − k)
(

2 − √
1 − k

)
)

imaginary positive
√

2 (−1 + k,0) real negative
√

2 + √
1 − k −

√

(1 − k)
(

2 + √
1 − k

)

imaginary negative

whereby the curve has the shape given in Fig. 9.22, and we deduce that

l = 4, r = 0, n = 0.

Figure 9.22 Hodograph of p (jω) for −3 < k < 1.

iv) For k = 1 the following crosses with the imaginary axis are presented:

ω1,2 = ±√
2,

which is why for ω ≥ 0 the hodograph crosses the imaginary axis once. The hodograph
now presents the crosses in Table 9.4,

Table 9.4 Hodograph crosses for k = 1.

ω Cross Semi-axis
0 (4,0) real positive√

2 (0,0) origin
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with the form depicted in Fig. 9.23, which gives

l = 2, r = 0, n = 2.

Figure 9.23 Hodograph of p (jω) for k = 1.

v) If k > 1 the hodograph has no crosses with the imaginary axis, so we have
Table 9.5,

Table 9.5 Hodograph crosses for k > 1.

ω Cross Semi-axis
0 (3 + k,0) real positive√

2 (−1 + k,0) real positive

with the image given in Fig. 9.24, so that

l = 2, r = 2, n = 0.

Figure 9.24 Hodograph of p (jω) for k > 1.

Table 9.6 summarizes the results obtained, based on the value of k.
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Table 9.6 Roots distribution for different values of k.

k l r n
k < −3 3 1 0
k = −3 3 0 1
−3 < k < 1 4 0 0
k = 1 2 0 2
k > 1 2 2 0

9.5 Polynomial robust stability

9.5.1 Parametric uncertainty and robust stability

As shown before, the stability property of the second order system (9.1) is charac-
terized by the root locations of the corresponding characteristic polynomial p (λ)

(see (9.16)). Evidently, any variations �A, �B, and �C of the matrices A, B, and
C, namely,

A = A0 + �A, B = B0 + �B, C = C0 + �C,

are transformed into the variations of the coefficients ρj (j = 0, ...,m) of the corre-
sponding characteristic polynomial,

pρ (λ) := λmρ0 + λm−1ρ1 + ... + ρm, ρi ∈ R. (9.34)

Denote the collection of its coefficients by

ρ := (ρ0, ..., ρm)ᵀ ∈ Rm+1 (9.35)

and suppose that this vector of coefficients belongs to a connected set R ∈ Rn that
corresponds to possible variations �A, �B, and �C, that is,

ρ ∈R. (9.36)

Definition 9.6. A characteristic polynomial pρ (λ) (9.34) is said to be robust stable
if for any ρ ∈ R the roots of the corresponding polynomial belongs to the left-hand
side of the complex plane C, i.e.,

Reλj (ρ) < 0 (j = 1, ...,m) , (9.37)

for all ρ ∈ R.

Definition 9.7. Denote by Qρ (ω) the set of all values of the vector

pρ (iω) = Uρ (ω) + iVρ (ω)
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given in C under a fixed ω ∈ [0,∞) when the parameters ρ take all possible values in
R, that is,

Qρ (ω) := {

z : z = pρ (iω) | ρ ∈ R
}

. (9.38)

The next result represents the criterion of polynomial robust stability.

Theorem 9.5 (The criterion of polynomial robust stability). The characteristic poly-
nomial pρ (λ) (9.34) is robust stable if and only if:

1. The class R of polynomials pρ (λ) contains at least one Hurwitz polynomial
p∗

ρ (λ), named a basic one.
2. The following principle of “zero-excluding” holds: the set Qρ (ω) does not con-

tain the origin (“zero-point”), i.e.,

0 /∈Qρ (ω) . (9.39)

Proof. Since the vector z = pρ (jω) ∈ C is continually dependent on the vector pa-
rameter ρ, a “transition” from stable polynomial to unstable polynomial (when we
are varying the coefficients ρ) may occur (this is always possible since the set A of
parameters is a connected set) only when one of its roots crosses the imaginary axis,
or, in other words, when there exists ω0 ∈ [0,∞) such that

pρ (iω0) = U (ω0) + iV (ω0) = 0.

But this is equivalent to the following identity:

U (ω0) = V (ω0) = 0,

which means exactly that

0 ∈ Qρ (ω) .

Evidently, to avoid this effect it is necessary and sufficient to satisfy conditions 1 and
2 of this theorem. The theorem is proven.

9.5.2 The Kharitonov theorem

Theorem 9.6 ((Kharitonov, 1978)). Let the set R, characterizing a parametric uncer-
tainty, be defined as

R := {

a ∈ R
n : a−

i ≤ ai ≤ a+
i (i = 1, ...n)

}

. (9.40)

Then the polynomial pρ (λ) (9.34) is robust stable if and only if:

1) the central polynomial pρ̊ (λ) with the coefficients åi = 1

2

(

a−
i + a+

i

)

is Hurwitz;
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2) the following four polynomials are stable (Hurwitz):

p(1)
ρ (λ) := 1 + a−

1 λ + a+
2 λ2 + a+

3 λ3 + a−
4 λ4 + a−

5 λ5 + · · · ,

p(2)
ρ (λ) := 1 + a+

1 λ + a+
2 λ2 + a−

3 λ3 + a−
4 λ4 + a+

5 λ5 + · · · ,

p(3)
ρ (λ) := 1 + a+

1 λ + a−
2 λ2 + a−

3 λ3 + a+
4 λ4 + a+

5 λ5 + · · · ,

p(4)
ρ (λ) := 1 + a−

1 λ + a−
2 λ2 + a+

3 λ3 + a+
4 λ4 + a−

5 λ5 + · · · .

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(9.41)

Proof. For any a ∈ R,

U (ω) = 1 − a2ω
2 + a4ω

4 − · · · ,

V (ω) = a1ω − a3ω
3 + a5ω

5 · · · ,

and hence for any ω ∈ [0,∞),

U− (ω) ≤ U (ω) ≤ U+ (ω) and V − (ω) ≤ V (ω) ≤ V + (ω) ,

where

U− (ω) = 1 − a+
2 ω2 + a−

4 ω4 − · · · ,

U+ (ω) = 1 − a−
2 ω2 + a+

4 ω4 − · · · ,

and

V − (ω) = a−
1 ω − a+

3 ω3 + a−
5 ω5 · · · ,

V + (ω) = a+
1 ω − a−

3 ω3 + a+
5 ω5 · · · .

That is why for any ω ∈ [0,∞) the set Qρ (ω) (9.38) is the rectangular (see Fig. 9.25)
with width

[

U+ (ω) − U− (ω)
]

Figure 9.25 The illustration of the Kharitonov’s criterion.
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and height
[

V + (ω) − V − (ω)
]

and with the center in the point pρ̊ (jω), corresponding to the stable polynomial with
the parameters

åi = 1

2

(

a−
i + a+

i

)

.

Note that the vertices of the set Qρ (ω) exactly correspond to the polynomials (9.41).
Suppose now that this rectangular touches the origin by one of its sides. By the
monotonically increasing property the vertices of this touching side will rotate in the
clockwise direction, and, hence, will become non-vertical, contradicting our previous
concept. So, direct application of Theorem 9.5 leads to the formulated result. The
theorem is proven.

Example 9.14. Let us find the parameter β for which the polynomial

pρ (λ) = 1 + a1λ + a2λ
2 + a3λ

3,

1 − β ≤ a1 ≤ 1 + β,

1.5 ≤ a2 ≤ 2, a3 = 1,

is robust stable. To do that construct four polynomials (see (9.41)):

p(1)
ρ (λ) := 1 + (1 − β)λ + 2λ2 + λ3,

p(2)
ρ (λ) := 1 + (1 + β)λ + 2λ2 + λ3,

p(3)
ρ (λ) := 1 + (1 + β)λ + 1.5λ2 + λ3,

p(4)
ρ (λ) := 1 + (1 − β)λ + 1.5λ2 + λ3.

The corresponding Hurwitz matrices are as follows:
⎡

⎢
⎣

1 − β 1 0

1 2 0

0 (1 − β) 1

⎤

⎥
⎦ ,

⎡

⎢
⎣

1 + β 1 0

1 2 0

0 (1 + β) 1

⎤

⎥
⎦ ,

⎡

⎢
⎣

1 + β 1 0

1 1.5 0

0 1 + β 1

⎤

⎥
⎦ ,

⎡

⎢
⎣

1 − β 1 0

1 1.5 0

0 1 − β 1

⎤

⎥
⎦ ,

By the Liénard–Chipart criterion we find that the conditions of the robust stability are

1 − β > 0, 1 + β > 0, or, equivalently, |β| < 1

and

2 (1 − β) − 1 > 0, 2 (1 + β) − 1 > 0,
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1.5 (1 + β) − 1 > 0, 1.5 (1 − β) − 1 > 0,

which leads to the following:

β < 0.5, β > −0.5, β >
2

3
− 1 = −1

3
, β < 1 − 2

3
= 1

3
,

or, equivalently,

|β| < 0.5, |β| < 1

3
.

Finally, all constraints, taken together, give

|β| < 1

3
.

9.6 Exercises

Exercise 9.1. Show that for parameter values satisfying the relation

c1 + c2

m1
= c3 + c4

m3
,

the equilibrium position of the dissipative system of the system, shown in Fig. 9.26,will
not be asymptotically stable if there is no friction between the masses and the guide.

Figure 9.26 Dissipative system of three masses.

Exercise 9.2. Show that with the relations

L3
(C1 + C2)

C1C2
= L1

(C3 + C4)

C3C4
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Figure 9.27 Electric circuit with 4 capacities, 3 inductions and 1 ohmic resistance.

between the parameters of the electric circuit shown in Fig. 9.27, undamped oscilla-
tions are possible in the system, despite the presence of an ohmic resistance R.

Exercise 9.3. Prove that the number l of roots with the negative real part of the poly-
nomial f (λ) of degree n, whose Mikhailov hodograph does not pass through the zero
point and satisfies the condition

�ω=∞
ω=0 argf (jω) = k

π

2
, |k| ≤ n,

is

l = n + k

2
.

Exercise 9.4. Confirm that for all values of the parameters α and β, satisfying the
condition

α < 1, α + β > 0,

the equilibrium position of the system

ẍ + 2ẋ + x − αy = 0,

ÿ + βẏ − x + y = 0

}

is asymptotically stable.

Exercise 9.5. The natural frequency of a linear oscillator is equal to ω0. Show that the
frequency of damped oscillations of the same oscillator in a medium with a resistance
proportional to velocity is equal to

ω = ω0
2πn

lnk

[

1 +
(

2πn

ln k

)2
]−1/2

,

if after n oscillations its amplitude decreases by k times.
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In this chapter, conservative systems are considered and the generalized impulses are
introduced. Hamilton’s variables are also considered. Here it is demonstrated that they
can completely describe the dynamics of a system in the Hamiltonian canonical form.
Some properties of the canonical equations are studied. Cyclic coordinates and the
first integrals of Hamiltonian systems are introduced and analyzed. Some useful prop-
erties (such as Poisson brackets), helping to test if some function is a first integral, are
discussed.

10.1 Hamiltonian function

In this chapter, conservative systems will be considered, that is, systems where the
generalized forces present are represented by the relationship

Q = −∇qV (t,q) ,

with V (t,q) as the potential energy function, and whose dynamics is described by the
Lagrange equations

d

dt
∇q̇L(t,q, q̇) − ∇qL(t,q, q̇) = 0, (10.1)

where the Lagrangian is defined as

L(t,q, q̇) := T (t,q, q̇) − V (t,q) , (10.2)

with T (t,q, q̇) as the function of kinetic energy.
The following definition is fundamental in this chapter.
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Definition 10.1. The vector

p := ∇q̇L(t,q, q̇) (10.3)

is referred to as the generalized impulse.

Remark 10.1. Let

q̇ = q̇ (t,q,p) (10.4)

be the inverse function of the transformation (10.3), that is, q̇ is obtained from (10.3).
With the definition (10.3) of p and in view of (10.4), Eqs. (10.1) can be expressed in
the form

ṗ − [∇qL(t,q, q̇)
]

q̇=q̇(t,q,p)
= 0. (10.5)

Clearly (10.1) and (10.5) are two equivalent ways of describing the dynamics of a
mechanical system: the difference lies in the set of variables chosen to make the de-
scription. The set {t,q, q̇} is called the Lagrange variables and the set {t,q,p} is
called the Hamiltonian variables.

The concept of the generalized impulse (10.3) and the Lagrange function (10.2)
allow defining the very useful function in the following definition.

Definition 10.2. The function

H (t,q,p) := [(p, q̇) − L(t,q, q̇)]q̇=q̇(t,q,p) (10.6)

is referred to as the Hamiltonian function. It is also known as the Hamiltonian or
the energy function.

The following examples illustrate the construction of H .

Example 10.1. Consider a particle of mass m in Euclidean three-dimensional coordi-
nate space (x, y, z). If the system’s Lagrange function is

L = m

2

(

ẋ2 + ẏ2 + ż2
)

− V (x, y, z) ,

let us obtain the corresponding Hamilton function. Defining

q := [x y z
]T

,

we have

L(q, q̇) = m

2
‖q̇‖2 − V (q) .

Using (10.3) we get

p = mq̇,
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which leads to

q̇ = 1

m
p,

and hence

[L(q, q̇)]q̇= 1
m

p = 1

2m
‖p‖2 − V (q) .

By the definition (10.6) we get

H (q,p) =
(

p,
1

m
p
)

− [L(q, q̇)]q̇= 1
m

p ,

resulting in

H (q,p) = 1

2m
‖p‖2 + V (q) . (10.7)

Example 10.2. Suppose a mechanical system has the function of Lagrange

L(q, q̇) = 3

2
q̇2

1 + 1

2
q̇2

2 − q2
1 − 1

2
q2

2 − q1q2.

Let us calculate H . The generalized impulses are

p1 = ∂L

∂q̇1
= 3q̇1,

p2 = ∂L

∂q̇2
= q̇2,

implying

q̇1 = 1

3
p1,

q̇2 = p2.

So,

[L(q, q̇)]q̇=q̇(p) = 1

6
p2

1 + 1

2
p2

2 − q2
1 − 1

2
q2

2 − q1q2

and by (10.6) we get

H (q,p) =
([

p1

p2

]

,

[
1
3p1

p2

])

− [L(q, q̇)]q̇=q̇(p) ,

which leads to

H (q,p) = 1

6
p2

1 + 1

2
p2

2 + q2
1 + 1

2
q2

2 + q1q2.
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Example 10.3. We need to design H for the following Lagrange functions:

a)

L(q, q̇) = 5

2
q̇2

1 + 1

2
q̇2

2 + q̇1q̇2 cos (q1 − q2) + 3 cosq1 + cosq2,

b)

L(q, q̇) = aq̇2
1 +

(

c2 + b2 cos2 q1

)

q̇2
2 .

Let us present here the sequential steps for both Lagrange functions.

a) From the definition (10.3) for generalized impulses it follows that

p1 = 5q̇1 + q̇2 cos (q1 − q2) ,

p2 = q̇2 + q̇1 cos (q1 − q2) ,

from which we have

q̇1 = −p1 + p2 cos (q1 − q2)

−5 + cos2 (q1 − q2)
,

q̇2 = −5p2 + p1 cos (q1 − q2)

−5 + cos2 (q1 − q2)
,

and

[L(q, q̇)]q̇=q̇(p) = −1

2

−2p1p2 cos (q1 − q2) + p2
1 + 5p2

2

−5 + cos2 (q1 − q2)
+

3 cosq1 + cosq2.

Using (10.6) we obtain

H (q,p) =

⎛

⎜
⎜
⎝

[

p1

p2

]

,

⎡

⎢
⎢
⎣

−p1 + p2 cos (q1 − q2)

−5 + cos2 (q1 − q2)

−5p2 + p1 cos (q1 − q2)

−5 + cos2 (q1 − q2)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

− [L(q, q̇)]q̇=q̇(p) =

−1

2

−2p1p2 cos (q1 − q2) + p2
1 + 5p2

2

−5 + cos2 (q1 − q2)
− 3 cosq1 − cosq2.

b) The vector p has the components

p1 = 2aq̇1,

p2 = 2
(

c2 + b2 cos2 q1

)

q̇2,

which is why

q̇1 = 1

2a
p1,
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q̇2 = 1

2
(

c2 + b2 cos2 q1
)p2,

and

[L(q, q̇)]q̇=q̇(p) = 1

4a
p2

1 + 1

4
(

c2 + b2 cos2 q1
)p2

2,

implying

H (q,p) =

⎛

⎜
⎜
⎝

[

p1

p2

]

,

⎡

⎢
⎢
⎣

1

2a
p1

1

2
(

c2 + b2 cos2 q1
)p2

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

− [L(q, q̇)]q̇=q̇(p) =

1

4a
p2

1 + 1

4
(

c2 + b2 cos2 q1
)p2

2.

Example 10.4. Fig. 10.1 shows a simple pendulum at whose distal end is a ball of
mass M and radius R. The pendulum arm is a solid cylinder of mass m and with
radius r and length l. The masses are uniformly distributed. Let us determine the
Hamiltonian function of this system. Let

q := ϕ.

Figure 10.1 Pendulum with non-negligible-mass arm.

From Chapter 3 (Section 3.6) it follows that for this system the kinetic energy has the
expression

T (q̇) = 1

2
IOq̇2,

where IO is the moment of inertia of the arm and the ball with respect to the axis
perpendicular to the plane of the movement and passing through the fixed point O and
whose value is

IO = m

(
r2

4
+ l2

3

)

+ M

(
2R2

5
+ l2

)

.
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If the horizontal plane passing through O is considered as the reference level for po-
tential energy, then

V (q) = −gl
(

M + m

2

)

cosq.

So, the Lagrange function turns out to be equal to

L(t, q, q̇) := T − V = 1

2
IOq̇2 + gl

(

M + m

2

)

cosq,

from where the generalized moment is calculated, using (10.3), as

p = ∂L

∂q
= IOq̇,

giving

q̇ = p

IO
.

By the definition (10.6),

H (q,p) = [pq̇ − L(t, q, q̇)]q̇= p
IO

,

implying

H (q,p) = p2

2IO
− gl

(

M + m

2

)

cosq =
p2

2

[

m

(
r2

4
+ l2

3

)

+ M

(
2R2

5
+ l2

)] − gl
(

M + m

2

)

cosq.

10.2 Hamiltonian canonical form

Hamilton variables can fully describe the dynamics of a system. The following theo-
rem addresses this point.

Theorem 10.1 (Hamilton, around 1835). The Hamilton variables {t,q,p} satisfy the
following system of equations:

∂H (t,q,p)

∂t
=
[

−∂L(t,q, q̇)

∂t

]

q̇=q̇(p)

(10.8)

and

q̇ = ∇pH (t,q,p) ,

ṗ = −∇qH (t,q,p) .

}

(10.9)
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Proof. By the definition (10.6) the Hamiltonian H (t,q,p) is defined as

H (t,q,p) := [(p, q̇) − L(t,q, q̇)]q̇=q̇(t,q,p) , (10.10)

whose partial derivatives with respect to the Hamilton variables are

∂H (t,q,p)

∂t
=
[

−∂L(t,q, q̇)

∂t

]

q̇=q̇(t,q,p)

,

∇qH (t,q,p) = [−∇qL(t,q, q̇)
]

q̇=q̇(t,q,p)
,

∇pH (t,q,p) = q̇ +
(

∂q̇
∂p

)ᵀ
(

p − ∇q̇L(t,q, q̇)
)

,

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

from which (10.8) and (10.9) follow if we take into account (10.5) and (10.3).

Remark 10.2. When a dynamic system is expressed in the form (10.9) with respect to
the Hamiltonian H (t,q,p), it is said to be given in the Hamiltonian canonical form.
For brevity, a system that is in the form (10.9) will be called a Hamiltonian system.

The first relation in (10.9) allows to obtain L(t,q, q̇) from H (t,q,p).

Example 10.5. Suppose a system is Hamiltonian with

H (t,q,p) = p1p2 + q2q1.

Show how we can recuperate the corresponding Lagrange function.
From (10.6) we have

L(t,q, q̇) = [(p, q̇) − H (t,q,p)]p=p(q,q̇) ,

where p = p (q, q̇) denotes the inverse function to the transformation q̇ = ∇pH (q,p).
Direct calculation gives

q̇ = ∇pH (t,q,p) = [p2 p1
]ᵀ

,

that is,

p = [q̇2 q̇1
]T

,

which leads to the representation

[H (t,q,p)]p=p(q,q̇) = q̇1q̇2 + q2q1,

and hence

L(t,q, q̇) =
[([

q̇2

q̇1

]

,

[

q̇1

q̇2

])

− H (t,q,p)

]

p=p(q,q̇)

.

Finally we get

L(t,q, q̇) = q̇1q̇2 − q2q1.
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Example 10.6. Let us build the Lagrange functions for the following Hamiltonians:

a)

H (t,q,p) = q1p2 − q2p1 + a
(

p2
1 + p2

2

)

,

b)

H (t,q,p) = 1

2

(

p2
1 + p2

2

sin2 q1

)

− a cosq1.

Let us present the required construction for each function of Hamilton.

a) In view of the relation

q̇ = ∇pH (t,q,p) =
[

−q2 + 2ap1

q1 + 2ap2

]

,

we have

p = 1

2a

[

q̇1 + q2

q̇2 − q1

]

,

which gives

[H (t,q,p)]p=p(q,q̇) = 1

2a
[q1 (q̇2 − q1) − q2 (q̇1 + q2)]+

1

4a

[

(q̇1 + q2)
2 + (q̇2 − q1)

2
]

.

That is why (in view of (10.6))

L(t,q, q̇) =
[

1

2a

([

q̇1 + q2

q̇2 − q1

]

,

[

q̇1

q̇2

])

− H (t,q,p)

]

p=p(q,q̇)

,

implying

L(t,q, q̇) = 1

4a

[

(q̇1 + q2)
2 + (q̇2 − q1)

2
]

.

b) We have

q̇ = ∇pH (t,q,p) =
⎡

⎣

p1
p2

sin2 q1

⎤

⎦ ,

which gives

p =
[

q̇1

q̇2 sin2 q1

]

.
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Hence

[H (t,q,p)]p=p(q,q̇) = 1

2

(

q̇2
1 + (q̇2 sinq1)

2
)

− a cosq1,

and therefore

L(t,q, q̇) =
[([

q̇1

q̇2 sin2 q1

]

,

[

q̇1

q̇2

])

− H (t,q,p)

]

p=p(q,q̇)

=

1

2

[

q̇2
1 + (q̇2 sinq1)

2
]

+ a cosq1.

The canonical descriptions (10.9) must meet certain conditions; these are given in
the result that follows.

Theorem 10.2. If a system of equations

q̇ = f (t,q,p) ,

ṗ = g (t,q,p) ,

}

(10.11)

with vector functions f,g : [0,∞) × Rn × Rn → Rn, which are some continuously
differentiable given functions, is the canonical description of some dynamic system,
then the following two relationships must be satisfied:

1.

∂f
∂p

=
(

∂f
∂p

)T

,
∂g
∂q

=
(

∂g
∂q

)T

, (10.12)

2.

∂f
∂q

= −
(

∂g
∂p

)T

. (10.13)

Proof. If (10.11) is a canonical form of Hamilton, then, in view of (10.9), there is a
Hamilton function H (t,q,p) such that

f = ∇pH (t,q,p) ,

g = −∇qH (t,q,p) .

}

(10.14)

Then

∂f
∂p

= ∇2
pH (t,q,p) ,

∂g
∂q

= −∇2
qH (t,q,p) ,

⎫

⎪⎪⎬

⎪⎪⎭
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where the symmetry condition (10.12) is followed. Now cross-deriving (10.14) we get

∂f
∂q

= ∂

∂q

(∇pH (t,q,p)
)

,

∂g
∂p

= − ∂

∂p

(∇qH (t,q,p)
)

,

⎫

⎪⎪⎬

⎪⎪⎭

and the property

∂

∂q

(∇pH (t,q,p)
)= ∂

∂p

(∇qH (t,q,p)
)

leads to the condition (10.13).

The previous result allows to solve the following problem.

Example 10.7. Determine the conditions that the system of equations

q̇ = Aq + Bp,

ṗ = Cq + Dp

}

(10.15)

must meet in order to be a Hamilton’s canonical description of a dynamic system.
Apply the conditions obtained for the system

ẋ1 = x1 + x2,

ẋ2 = 3x1 + αx2,

}

(10.16)

and calculate the value of α that makes it in the canonical form of Hamilton.
In the notation of the previous theorem, for (10.15) we have

f = Aq + Bp,

g = Cq + Dp,

}

which is why

∂f
∂q

= A,
∂f
∂p

= B,

∂g
∂q

= C,
∂g
∂p

= D.

⎫

⎪⎪⎬

⎪⎪⎭

So, we must have, by condition (10.12),

B = BT , C = CT , (10.17)

and by condition (10.13),

A = −DT . (10.18)
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The conclusions (10.17) and (10.18), applied to the system (10.16), under the identi-
fication

q = x1, p = x2,

lead to the condition

α = −1.

10.3 First integrals

The expression of a dynamic system in Hamilton’s canonical form has consequences
that go beyond being a mere alternative form to Lagrange’s equations. Remember
from Chapter 6 that (10.1) can be expressed in the normal format, namely,

q̈ = F (t,q, q̇) , q ∈ Rn.

Therefore, the dynamics of the system represented by (10.1) is described by a system
of n nonlinear differential equations of the second order. However, in the alternative
form of Hamilton (10.9), the same system is governed by 2n nonlinear differential
equations of the first order. This observation is the great contribution of the technique
addressed in this chapter, since it is known that, comparatively, there are many more
results applicable to this last type of equations than for the first. In fact, this section
presents several such results.

It has already been mentioned that in mechanics the functions are smooth, so in the
following, this fact is used without explicitly mentioning it.

Definition 10.3. A function f (t,q,p) that is constant in the trajectories of a Hamil-
tonian system is called the first integral of that system.

The previous definition says that if the total temporal derivative of f , given by

df

dt
= ∂f

∂t
+

n
∑

i=1

(
∂f

∂qi

q̇i + ∂f

∂pi

ṗi

)

,

along the paths of a system in the form (10.9)

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, i = 1, ..., n, (10.19)

for some function H (t,q,p), that is,

df

dt
= ∂f

∂t
+

n
∑

i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)

,

is identically zero, then f is the first integral of the system (10.19).
The previous discussion allows to formulate in a trivial way the following result.
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Theorem 10.3. A function f (t,q,p) is the first integral of a Hamiltonian system if
and only if

∂f

∂t
+ (f,H) ≡ 0,

where

(f,H) :=
n
∑

i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)

(10.20)

receives the name of the Lee–Poisson (or simply Poisson) bracket.

The importance of the first integrals is that they allow reducing the number of
differential equations to solve in a Hamiltonian system. In other words, suppose the
Hamiltonian system

q̇ = ∇pH (t,q,p) ,

ṗ = −∇qH (t,q,p)

}

(10.21)

has as first integrals the following linearly independent relationships:1

f1 (t,q,p) ≡ C1,

...

fl (t,q,p) ≡ Cl,

⎫

⎪⎪⎬

⎪⎪⎭

(10.22)

where Ci , i = 1, ..., l, denote constants. Then a Hamilton q or p variable can be found
from each of the relationships, which eliminates the need to solve its corresponding
differential equation (10.21).

Conclusion 10.1. Based on the above, it can be said that the first l integrals (10.22)
reduce the order of the system (10.21) to 2n − l. So, if l = 2n, then it is not necessary
to solve any differential equation at all.

1 With the notation

z :=
[

q

p

]

the set of expressions (10.22) is linearly independent if and only if all the possible determinants of order
l × l of the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂z2n

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂z2n

.

.

.
.
.
.

. . .
.
.
.

∂fl
∂z1

∂fl
∂z2

· · · ∂fl
∂z2n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

are non-zero for any (t, z).
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10.4 Some properties of first integrals

Given the importance of the first integrals, several of its properties are now investi-
gated.

10.4.1 Cyclic coordinates

Lemma 10.1. If among the arguments of the Lagrange function L(t,q, q̇) one of the
coordinates qα does not appear, that is,

L = L(t, q1, · · · , qα−1, qα+1, · · · , qn, q̇) ,

which is true if and only if

∂L

∂qα

= 0 ∀ (t,q, q̇) ,

then there is the first integral

f (t,q,p) ≡ Cα,

where, in addition,

f (t,q,p) = pα.

Proof. The Lagrange equation in (10.1), corresponding to α, is given by

d

dt

∂L

∂q̇α

− ∂L

∂qα

= 0,

but in view of

∂L

∂q̇α

= pα,
∂L

∂qα

= 0,

it is reduced to

dpα

dt
= 0,

which gives

pα = const
t

= Cα.

Definition 10.4. If for some α ∈ {1,2, ..., n} we have

∂L

∂qα

≡ 0,

then the coordinate qα is called cyclic.
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By the previous lemma, if qα is cyclic, then

pα ≡ Cα.

Therefore, in the Hamilton function corresponding to the system in question, both qα

and pα do not appear, that is,

H = H (t, q1, · · · , qα−1, qα+1, · · · , qn;p1, · · · ,pα−1,Cα,pα+1, · · · ,pn) ,

(10.23)

and since

q̇α = ∂H

∂pα

= ∂H

∂Cα

,

by direct integration we get

qα (t) = qα (0) +
∫ t

τ=0

∂

∂Cα

Hα

(

τ, qi 	=α (τ ) ,pi 	=α (τ ) ,Cα

)

dτ,

where Hα

(

τ, qi 	=α (τ ) ,pi 	=α (τ ) ,Cα

)

denotes (10.23).

Conclusion 10.2. It may be concluded that each cyclic coordinate reduces the number
of differential equations of the description (10.9) by 2.

10.4.2 Some properties of the Poisson brackets

From the last theorem we know that the function f (t,q,p) is the first integral of the
dynamic system with canonical description (10.9) with respect to some function of
Hamilton H (t,q,p) if and only if

∂f

∂t
+ (f,H) ≡ 0, (10.24)

and if in particular
∂f

∂t
≡ 0, then the condition (10.24) results in

(f,H) ≡ 0, (10.25)

which shows the importance of the Lee–Poisson brackets in the characterization of the
first time-independent integrals.

Lemma 10.2. Consider the functions ϕ (t,q,p), ψ (t,q,p), and χ (t,q,p). Then the
following properties hold:

a)

(ϕ,ψ) = − (ψ,ϕ) ,
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b)

(cϕ,ψ) = c (ϕ,ψ) , c = const,

c)

(ϕ + ψ,χ) = (ϕ,χ) + (ψ,χ) ,

d) if s is a Hamilton variable, that is,

s ∈ {t, p1, q1, · · · ,pn, qn} ,

then

∂

∂s
(ϕ,ψ) =

(
∂ϕ

∂s
,ψ

)

+
(

ϕ,
∂ψ

∂s

)

, (10.26)

e) the Poisson identity

((ϕ,ψ) ,χ) + ((ψ,χ) ,ϕ) + ((χ,ϕ) ,ψ) = 0.

Proof. Sections (a)–(d) follow directly from the definition:

a)

(ϕ,ψ) =
n
∑

i=1

(
∂ϕ

∂qi

∂ψ

∂pi

− ∂ϕ

∂pi

∂ψ

∂qi

)

=

−
n
∑

i=1

(
∂ψ

∂qi

∂ϕ

∂pi

− ∂ψ

∂pi

∂ϕ

∂qi

)

= − (ψ,ϕ) ,

b)

(cϕ,ψ) =
n
∑

i=1

(
∂cϕ

∂qi

∂ψ

∂pi

− ∂cϕ

∂pi

∂ψ

∂qi

)

=

c

n
∑

i=1

(
∂ϕ

∂qi

∂ψ

∂pi

− ∂ϕ

∂pi

∂ψ

∂qi

)

= c (ϕ,ψ) ,

c)

(ϕ + ψ,χ) =
n
∑

i=1

(
∂ (ϕ + ψ)

∂qi

∂χ

∂pi

− ∂ (ϕ + ψ)

∂pi

∂χ

∂qi

)

=
n
∑

i=1

(
∂ϕ

∂qi

∂χ

∂pi

− ∂ϕ

∂pi

∂χ

∂qi

)

+
n
∑

i=1

(
∂ψ

∂qi

∂χ

∂pi

− ∂ψ

∂pi

∂χ

∂qi

)

=

(ϕ,χ) + (ψ,χ) ,
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d)

∂

∂s
(ϕ,ψ) = ∂

∂s

n
∑

i=1

(
∂ϕ

∂qi

∂ψ

∂pi

− ∂ϕ

∂pi

∂ψ

∂qi

)

=
n
∑

i=1

[(
∂

∂s

∂ϕ

∂qi

)
∂ψ

∂pi

−
(

∂

∂s

∂ϕ

∂pi

)
∂ψ

∂qi

]

+
n
∑

i=1

[
∂ϕ

∂qi

(
∂

∂s

∂ψ

∂pi

)

− ∂ϕ

∂pi

(
∂

∂s

∂ψ

∂qi

)]

.

This result (10.26) follows trivially, because due to the smoothness of ϕ and ψ ,

∂

∂s

∂θ

∂ri
= ∂

∂ri

∂θ

∂s
, θ ∈ {ϕ,ψ} , r ∈ {p,q} , i = 1, ..., n.

e) We have

((ϕ,ψ) ,χ) =

n
∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂

n
∑

j=1

(
∂ϕ

∂qj

∂ψ

∂pj

− ∂ϕ

∂pj

∂ψ

∂qj

)

∂qi

∂χ

∂pi

−
∂

n
∑

j=1

(
∂ϕ

∂qj

∂ψ

∂pj

− ∂ϕ

∂pj

∂ψ

∂qj

)

∂pi

∂χ

∂qi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

n
∑

i=1

⎛

⎜
⎜
⎝

n
∑

j=1

∂

(
∂ϕ

∂qj

∂ψ

∂pj

− ∂ϕ

∂pj

∂ψ

∂qj

)

∂qi

∂χ

∂pi

−
n
∑

j=1

∂

(
∂ϕ

∂qj

∂ψ

∂pj

− ∂ϕ

∂pj

∂ψ

∂qj

)

∂pi

∂χ

∂qi

⎞

⎟
⎟
⎠

=
n
∑

i=1

n
∑

j=1

(
∂2ϕ

∂qj ∂qi

∂ψ

∂pj

+ ∂ϕ

∂qj

∂2ψ

∂pj ∂qi

− ∂2ϕ

∂pj ∂qi

∂ψ

∂qj

− ∂ϕ

∂pj

∂2ψ

∂qj ∂qi

)
∂χ

∂pi

−
n
∑

i=1

n
∑

j=1

(
∂2ϕ

∂qj ∂pi

∂ψ

∂pj

+ ∂ϕ

∂qj

∂2ψ

∂pj ∂pi

− ∂2ϕ

∂pj ∂pi

∂ψ

∂qj

− ∂ϕ

∂pj

∂2ψ

∂qj ∂pi

)
∂χ

∂qi

,

and analogously,

((ϕ,ψ) ,χ) =
(

∂2ϕ

∂q2

∂ψ

∂p
+ ∂ϕ

∂q

∂2ψ

∂p∂q
− ∂2ϕ

∂p∂q

∂ψ

∂q
− ∂ϕ

∂p

∂2ψ

∂q∂q

)
∂χ

∂p
−

(
∂2ϕ

∂q∂p

∂ψ

∂p
+ ∂ϕ

∂q

∂2ψ

∂p∂p
− ∂2ϕ

∂p∂p

∂ψ

∂q
− ∂ϕ

∂p

∂2ψ

∂q∂p

)
∂χ

∂q
=

∂2ϕ

∂q2

∂ψ

∂p

∂χ

∂p
− ∂2ϕ

∂p∂q

∂ψ

∂q

∂χ

∂p
− ∂2ϕ

∂q∂p

∂ψ

∂p

∂χ

∂q
+ ∂2ϕ

∂p∂p

∂ψ

∂q

∂χ

∂q
+

∂χ

∂q

∂2ϕ

∂p∂q

∂ψ

∂p
− ∂χ

∂p

∂2ϕ

∂q∂q

∂ψ

∂p
− ∂χ

∂q

∂2ϕ

∂p∂p

∂ψ

∂q
+ ∂χ

∂p

∂2ϕ

∂q∂p

∂ψ

∂q
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and

((ψ,χ) ,ϕ) =
(

∂2ψ

∂q2

∂χ

∂p
+ ∂ψ

∂q

∂2χ

∂p∂q
− ∂2ψ

∂p∂q

∂χ

∂q
− ∂ψ

∂p

∂2χ

∂q∂q

)
∂ϕ

∂p

−
(

∂2ψ

∂q∂p

∂χ

∂p
+ ∂ψ

∂q

∂2χ

∂p∂p
− ∂2ψ

∂p∂p

∂χ

∂q
− ∂ψ

∂p

∂2χ

∂q∂p

)
∂ϕ

∂q
,

((χ,ϕ) ,ψ) =
(

∂2χ

∂q2

∂ϕ

∂p
+ ∂χ

∂q

∂2ϕ

∂p∂q
− ∂2χ

∂p∂q

∂ϕ

∂q
− ∂χ

∂p

∂2ϕ

∂q∂q

)
∂ψ

∂p

−
(

∂2χ

∂q∂p

∂ϕ

∂p
+ ∂χ

∂q

∂2ϕ

∂p∂p
− ∂2χ

∂p∂p

∂ϕ

∂q
− ∂χ

∂p

∂2ϕ

∂q∂p

)
∂ψ

∂q
,

implying

((ϕ,ψ) ,χ) + ((ψ,χ) ,ϕ) + ((χ,ϕ) ,ψ) = 0.

It is also easy to check that

(ϕ + ψ,χ) + (ψ + χ,ϕ) + (χ + ϕ,ψ) =
(ϕ,χ) + (ψ,χ) + (ψ,ϕ) + (χ,ϕ) + (χ,ψ) + (ϕ,ψ) .

The newly characterized bracket allows to obtain first integrals from others, as
shown in the following two results.

Theorem 10.4 (Jacobi–Poisson). If f and g are first integrals of a system with Hamil-
tonian H , then the function

ψ := (f, g) (10.27)

is also the first integral of the same system.

Proof. Since f and g are first integrals, by (10.24) we have

∂f

∂t
+ (f,H) = 0,

∂g

∂t
+ (g,H) = 0,

⎫

⎪⎬

⎪⎭

(10.28)

and for ψ , if it is also a first integral, we must have

∂ψ

∂t
+ (ψ,H) = 0. (10.29)

Now, by the definition of ψ , given in (10.27), and by the properties of the Lee–Poisson
brackets we have

∂ψ

∂t
=
(

∂f

∂t
, g

)

+
(

f,
∂g

∂t

)



328 Classical and Analytical Mechanics

and

(ψ,H) = ((f, g) ,H) = − ((g,H) ,f ) − ((H,f ) , g) .

Using the properties

− (H,f ) = (f,H) ,

(

f,
∂g

∂t

)

= −
(

∂g

∂t
, f

)

,

we get

∂ψ

∂t
+ (ψ,H) =

(
∂f

∂t
+ (f,H) , g

)

−
(

∂g

∂t
+ (g,H) ,f

)

,

where (10.29) follows, given the premise (10.28).

Lemma 10.3. If f (t,q,p) = const
t

and therefore is the first integral of a Hamiltonian

system and if qα is a cyclic coordinate of the same system, then
∂if

∂qi
α

for any i = 1,2..

are also first integrals.

Proof. Let H be the Hamilton function of the system. Since f is the first integral,
by (10.24) we have

∂f

∂t
+ (f,H) ≡ 0.

The derivative of this expression with respect to qα is given by

∂2f

∂t∂qα

+ ∂

∂qα

(f,H) ≡ 0. (10.30)

But by the property (d) of the Lee–Poisson brackets,

∂

∂qα

(f,H) =
(

∂f

∂qα

,H

)

+
(

f,
∂H

∂qα

)

=
(

∂f

∂qα

,H

)

,

where
∂H

∂qα

= 0 since qα is cyclic. Using this result, (10.30) is reduced to

∂

∂t

∂f

∂qα

+
(

∂f

∂qα

,H

)

≡ 0,

and hence, in view of (10.24)
∂f

∂qα

is the first integral, implying that there exists a

constant C such that

∂f

∂qα

(t,q,p) ≡ C.
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The fact that higher order derivatives are also first integrals is established by a similar
process.

In stationary Hamiltonian systems, where H is not an explicit function of time,
it follows that H is also a first integral.

Lemma 10.4. If the Hamilton function H of a dynamic system is such that

∂H

∂t
≡ 0,

then H is a first integral, namely,

H (q (t) ,p (t)) = const
t

.

Proof. By the condition (10.25), H is the first integral if and only if

(H,H) = 0,

which is trivially satisfied in view of the definition of the Lee–Poisson brackets given
in (10.20).

The previous lemma allows us to test easily a result of Chapter 3 (Section 3.3)
concerning the conservation of total mechanical energy in conservative systems.

Example 10.8. Let us show that the total mechanical energy of a conservative particle
system remains constant. Since the mechanical energy of a particle system is the sum
of the mechanical energies of the particles, it is enough to show the statement for the
terms. If it has mass m, the kinetic energy is

T = m

2

(

ẋ2 + ẏ2 + ż2
)

,

while the potential energy V (x, y, z) obeys some standard expression. As obtained in
the first example of this chapter, if

q := [x y z
]T

,

the generalized impulse is given by

p = mq̇,

implying

T (p) = 1

2m
‖p‖2 ,

and the Hamiltonian of this system is

H (q,p) = T (p) + V (q) ,
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that is, it is the total mechanical energy of the particle, which also does not explicitly
depend on time. So, in view of the previous lemma, it remains constant, that is,

T (p) + V (q) = const
t

.

10.4.3 First integrals by inspection

The first integrals can be identified by the form of the Hamiltonian. The results that
follow address this fact.

Lemma 10.5. If the Hamiltonian H of a given system has the structure

H = H (f (q1, q2, · · · , qm,p1,p2, · · · ,pm) , qm+1,pm+1, · · · , qn,pn; t) ,

then f (q1, q2, · · · , qm,p1,p2, · · · ,pm) is a first integral, that is,

f (q1 (t) , q2 (t) , · · · , qm (t) ,p1 (t) ,p2 (t) , · · · ,pm (t)) = C

for some constant C.

Proof. Note that

(f,H) =
n
∑

i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)

=
n
∑

i=1

(
∂f

∂qi

∂H

∂f

∂f

∂pi

− ∂f

∂pi

∂H

∂f

∂f

∂qi

)

= 0,

and the result follows from the condition (10.25).

The following simple example illustrates the usefulness of the previous result.

Example 10.9. The immediate application of the previous lemma to the Hamiltonian
function

H =
(

cosq1

p1
+ q2

2 + p2
2

)(
1

3
lnq3 + p3

)

allows to establish that

cosq1 (t)

p1 (t)
+ q2

2 (t) + p
2(t)
2 = C1,

1

3
lnq3 (t) + p3 (t) = C2,

where C1, C2 are some constants.

Lemma 10.6. If the Hamiltonian H of a system has the form

H = H (ϕ1 (q1,p1) , ϕ2 (q2,p2) , · · · , ϕn (qn,pn) ; t) ,
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then {ϕi (qi,pi)}ni=1 are the first integrals of the system, namely,

ϕi (qi (t) ,pi (t)) = Ci, i = 1, ..., n,

with some constant Ci , i = 1, ..., n.

Proof. Since for all l = 1, ..., n

d

dt
ϕl = ∂

∂t
ϕl + (ϕl,H) =

(ϕl,H) =
n
∑

i=1

(
∂ϕl

∂qi

∂H

∂pi

− ∂ϕl

∂pi

∂H

∂qi

)

=

∂ϕl

∂ql

∂H

∂ϕl

∂ϕl

∂pl

− ∂ϕl

∂pl

∂H

∂ϕl

∂ϕl

∂ql

= 0,

in view of the condition (10.25) the statement follows.

An illustrative example of the result is presented below.

Example 10.10.

a) If

H =
n
∑

i=1

ai (t) sin
(

q2
i + p2

i

)

is a Hamiltonian function of some system, by the previous lemma, it is concluded
that

sin
(

q2
i (t) + p2

i (t)
)

= αi, i = 1, ..., n,

for some constants αi , i = 1, ..., n.
b) If the function

H = sin

(
n
∑

i=1

(

q2
i + p2

i

)
)

is a Hamiltonian of some system, then

q2
i (t) + p2

i (t) = βi, i = 1, ..., n,

with some constants βi , i = 1, ..., n.

Lemma 10.7 (On a telescopic structure). Assume that the Hamiltonian function H of
a system can be presented in the form

H = H
(

ϕj (· · ·ϕ2 (ϕ1 (q1,p1) ;q2,p2) ; · · · ) ;qj+1,pj+1, · · · , qn,pn; t
)

,
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for some j (1 ≤ j ≤ n). Then

{ϕk (ϕk−1 (· · ·ϕ2 (ϕ1 (q1,p1) ;q2,p2) ; · · · ;qk−1,pk−1) ;qk,pk)}ji=1

are the first integrals of this system so that there exist constants Ck , k = 1, ..., j , such
that

ϕk (ϕk−1 (· · ·ϕ2 (ϕ1 (q1,p1) ;q2,p2) ; · · · ;qk−1,pk−1) ;qk,pk) = Ck.

Proof. Note that for any k (1 ≤ k ≤ j) and any i (1 ≤ i ≤ n) we have

∂ϕk

∂ri
= ∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)
∂ϕi

∂ri
, r ∈ {p,q} , i ≤ k,

∂H

∂ri
= ∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)
∂ϕi

∂ri
,

and therefore

(ϕk,H) =
n
∑

i=1

(
∂ϕk

∂qi

∂H

∂pi

− ∂ϕk

∂pi

∂H

∂qi

)

=
j
∑

i=1

(
∂ϕk

∂qi

∂H

∂pi

− ∂ϕk

∂pi

∂H

∂qi

)

n
∑

i=1

[
∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)
∂ϕi

∂qi

∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)
∂ϕi

∂pi

−

∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)
∂ϕi

∂pi

∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)
∂ϕi

∂qi

=
[

∂H

∂ϕk

(
∂ϕk

∂ϕk−1
· · · ∂ϕ2

∂ϕ1

)]2 n
∑

i=1

(
∂ϕi

∂qi

∂ϕi

∂pi

− ∂ϕi

∂pi

∂ϕi

∂qi

)

= 0,

and again the result follows from the condition (10.25).

The newly formulated lemma serves to identify first integrals in systems as in the
following example.

Example 10.11. Suppose the Hamiltonian function of a certain system is

H = p2
1 + sinq1 + (p2 + p3 cosq2)

2

q2
2

.

Then, by the previous lemma, it follows that

p3(t) = C1,

(p2(t) + p3(t) cosq2(t))
2

q2
2 (t)

= C2,

p2
1(t) + sinq1(t) = C3

for some constants C1, C2, C3.
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The chapter concludes with two more results on obtaining first integrals from the
Hamiltonian form.

Lemma 10.8. If a system has a Hamiltonian function of the form

H =
∑n

i=1 fi (qi,pi)
∑n

i=1 ϕi (qi,pi)
, (10.31)

then {fi (qi,pi) − Hϕi (qi,pi)}ni=1 are the first integrals of the system, namely, there
exist some constants Ci , i = 1, ..., n, such that

fi (qi,pi) − Hϕi (qi,pi) = Ci. (10.32)

Proof. First let us show that for any functions f (q,p) and g(q,p), we have

(fg,H) = f (g,H) + g (f,H) . (10.33)

Indeed, by the definition of the Poisson brackets we have

(fg,H) =
n
∑

i=1

[
∂ (fg)

∂qi

∂H

∂pi

− ∂ (fg)

∂pi

∂H

∂qi

]

=
n
∑

i=1

[(
∂f

∂qi

g + f
∂g

∂qi

)
∂H

∂pi

−
(

∂f

∂pi

g + f
∂g

∂pi

)
∂H

∂qi

]

=

f

n
∑

i=1

(
∂g

∂qi

∂H

∂pi

− ∂g

∂pi

∂H

∂qi

)

+ g

n
∑

i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)

,

and the assertion (10.33) follows. In view of (10.25), formula (10.32) holds if and only
if

(fi (qi,pi) − Hϕi (qi,pi) ,H) = 0.

But, by (10.33)

(fi − Hϕi,H) = (fi,H) − (Hϕi,H) = (fi,H) − H (ϕi,H) − ϕi (H,H) ,

and since (H,H) = 0 we may conclude that

(fi − Hϕi,H) =
n
∑

j=1

(
∂fi

∂qj

∂H

∂pj

− ∂fi

∂pj

∂H

∂qj

)

− H

n
∑

j=1

(
∂ϕi

∂qj

∂H

∂pj

− ∂ϕi

∂pj

∂H

∂qj

)

= ∂fi

∂qi

∂H

∂pi

− ∂fi

∂pi

∂H

∂qi

− H

(
∂ϕi

∂qi

∂H

∂pi

− ∂ϕi

∂pi

∂H

∂qi

)

=
(

∂fi

∂qi

− H
∂ϕi

∂qi

)
∂H

∂pi

−
(

∂fi

∂pi

− H
∂ϕi

∂pi

)
∂H

∂qi

.
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Now, deriving (10.31) we get

∂H

∂rj
=

∂fj

∂rj

∑n
i=1 ϕi − ∂ϕj

∂rj

∑n
i=1 fi

(∑n
i=1 ϕi

)2
=

∂fj

∂rj
− H

∂ϕj

∂rj
∑n

l=1 ϕl

,

r ∈ {p,q} , j = 1, ..., n,

(10.34)

which is why

(fi − Hϕi,H) =
n
∑

j=1

(
∂fi

∂qj

− H
∂ϕi

∂qj

)
∂H

∂pj

−
(

∂fi

∂pj

− H
∂ϕi

∂pj

)
∂H

∂qi

=
(

∂fi

∂qi

− H
∂ϕi

∂qi

)
∂H

∂pi

−
(

∂fi

∂pi

− H
∂ϕi

∂pi

)
∂H

∂qi

=

∂fi

∂qi

∂H

∂pi

− ∂fi

∂pi

∂H

∂qi

= ∂fi

∂qi

∂fi

∂pi

− H
∂ϕi

∂pi
∑n

l=1 ϕl

− ∂fi

∂pi

∂fi

∂qi

− H
∂ϕi

∂qi
∑n

l=1 ϕl

= 0,

which concludes the proof.

Lemma 10.9. Consider a system with the Hamiltonian

H = f (t)

∑n
i=1 αiϕi (qi,pi)

∑n
i=1 βiϕi (qi,pi)

,

where αi , βi , i = 1, ..., n, are some constants. Then {ϕi (qi,pi)}ni=1 are the first inte-
grals of the system, satisfying

ϕi (qi (t) ,pi (t)) = Ci, i = 1, ..., n,

for some set of constants Ci .

Proof. Since ϕi = ϕi (qi,pi) it follows that

(ϕi,H) =
n
∑

j=1

(
∂ϕi

∂qj

∂H

∂pj

− ∂ϕi

∂pj

∂H

∂qj

)

= ∂ϕi

∂qi

∂H

∂pi

− ∂ϕi

∂pi

∂H

∂qi

.

But in view of (10.34) H results in

∂H

∂rj
= f (t)

∂ϕj

∂rj

αj

∑n
i=1 βiϕi − βj

∑n
i=1 αiϕi

(∑n
i=1 βiϕi

)2
=

∂ϕj

∂rj

αjf (t) − βjH
∑n

i=1 βiϕi

, r ∈ {p,q} , j = 1, ..., n,
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so

(ϕi,H) = ∂ϕi

∂qi

∂ϕi

∂pi

αif (t) − βiH
∑n

j=1 βjϕj

− ∂ϕi

∂pi

∂ϕi

∂qi

αif (t) − βiH
∑n

j=1 βjϕj

= 0,

and by (10.25) the result follows.

10.5 Exercises

Exercise 10.1. The Hamiltonian H of a system is

H =
(

q2
1 + p2

1

)

F (p2, ..., pn, t) .

Show that the movement of the system is given in the form

pi (t) = αi,

qi (t) = α2
1

∫
∂

∂αi

F (α2, ..., αn, t) dt + βi,

⎫

⎬

⎭
for i = 2, ..., n,

and

q1 (t) = α1 sin

(

2
∫

F (α2, ..., αn, t) dt + β1

)

,

q1 (t) = α1 cos

(

2
∫

F (α2, ..., αn, t) dt + β1

)

.

⎫

⎪⎪⎬

⎪⎪⎭

Exercise 10.2. Show that using the Poisson brackets (10.20) the canonical Hamilton
equations (10.9) can be represented as

q̇i = (qi,H) ,

ṗi = (pi,H) ,

}

i = 1, ..., n.

Exercise 10.3. The function W (q,p, t) (q,p ∈ R) satisfies the relation

∂

∂t
W + (W,H) = F (t) ,

where (W,H) is the Poisson bracket. Check that the first integrals of the canonical
system with the Hamiltonian H have the form

fi (q,p, t) = W (qi,pi, t) −
∫

F (t) dt, i = 1, ..., n.

Exercise 10.4. A mechanical system with the Lagrangian

L = 1

2

4
∑

i=1

q̇2
i − 
(q)
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has the first integral

f = α (q1q̇2 − q̇1q2) + β (q3q̇4 − q̇3q4) ,

where α and β are constant parameters. Show that the potential energy 
(q) of the
system has the form


(q) = F

(

q2
1 + q2

2 , q2
3 + q2

4 , α arctan

(
q3

q4

)

− β arctan

(
q1

q2

))

.

Exercise 10.5. A dynamic system is described by a system of differential equations

ẋi = fi (x) , i = 1, ..., n, x ∈ Rn. (10.35)

For each starting point x (0) = a there is a temporary mean

lim
T →∞

1

T

∫ T

t=0
g (x (a, t)) dt = ψ (a) ,

where g: Rn → R is some function and x (a, t) is the solution of the system (10.35)
with the initial value a. Show that the function ψ (x) will be the first integral of the
system.
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11.1 Canonical transformations

The Hamiltonian H depends on the variables t , q, and p:

H = H(t,q,p),
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so that

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, i = 1, n. (11.1)

These variables are transformed into a set of new variables:

q̃i = ϕi(t,q,p),

p̃i = ψi(t,q,p).

}

(11.2)

We also will require the property of one-to-one mappings of (11.2) to be able to re-
cuperate back the coordinates (q,p) from new ones

(

q̃, p̃
)

. To make it possible, using
the theorem on inverse functions, the following condition must be satisfied:

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂

∂q1
ϕ1 · · · ∂

∂q1
ϕn

∂

∂q1
ψ1 · · · ∂

∂q1
ψn

∂

∂p1
ϕ1 · · · ∂

∂p1
ϕn

∂

∂p1
ψ1 · · · ∂

∂p1
ψn

...
...

...
...

...
...

∂

∂qn

ϕ1 · · · ∂

∂qn

ϕn

∂

∂qn

ψ1 · · · ∂

∂qn

ψn

∂

∂pn

ϕ1 · · · ∂

∂pn

ϕn

∂

∂pn

ψ1 · · · ∂

∂pn

ψn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�= 0 (11.3)

for all (q,p) and any t ≥ 0.

Definition 11.1. The nonlinear mapping from the space (t,q,p) into the space
(t, q̃, p̃) by means of the vector functions ϕ and ψ (see (11.2)), respectively, which
satisfies the condition (11.3), is referred to as a canonical transformation if there
exists a function H̃ (t, q̃, p̃) such that the new variables q̃ and p̃ satisfy

d

dt
q̃i (t) = ∂H̃ (t, q̃, p̃)

∂p̃i

,
d

dt
p̃i (t) = −∂H̃ (t, q̃, p̃)

∂q̃i

, i = 1, n. (11.4)

The central idea of Hamilton was to look for a transformation such that the new
Hamiltonian H̃ would be as simple as possible, for example, equal to zero or to a
constant c. Therefore, following his idea, selecting

H̃ (t, q̃, p̃) = 0 for any (t, q̃, p̃),

we will have

d

dt
q̃i (t) = 0 and q̃i (t) = αi = const

t
,

d

dt
p̃i (t) = 0 and q̃i (t) = βi = const

t
;

⎫

⎪⎬

⎪⎭

(11.5)
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and from this point we do not need to resolve the system of differential equa-
tions (11.1), dealing now only with the system (11.5) of algebraic equations, which is
significantly simpler.

11.2 The Hamilton–Jacobi method

This scheme consists in the following considerations.
Given the derivatives of the Hamilton variables

q̇ = ∇p̄H, ṗ = −∇q̄H,

as well as its canonical transformations q̃ = ϕ(t,q,p) and p̃ = ψ(t,q,p), respectively,
which satisfy

d

dt
ϕ(t,q,p) = ∇p̃H̃ (t, q̃, p̃),

d

dt
ψ(t,q,p) = −∇q̃H̃ (t, q̃, p̃),

we may realize the main idea to select these transformations in such a way that the
new Hamiltonian would be as simple as possible. In the particular case where the
Hamiltonian H̃ (t, q̃, p̃) is equal to zero, namely,

H̃ (t, q̃, p̃) = 0,

the transformation functions ϕ(t,q,p) and p̃ = ψ(t,q,p) are constant:

q̃ = ϕ(t,q,p) = const
t

, p̃ = ψ(t,q,p)) = const
t

,

being able to redefine these functions by

αi = ϕi(t,q,p), βi = ψi(t,q,p).

So, the new algebraic system is of the type

qi = qi(t,α,β), pi = pi(t,α,β).

Two problems arise:

1. Obtain criteria of “canonicity” for transformations ϕ and ψ .
2. For which canonical transformations ϕ and ψ do we have H̃ (t, q̃, p̃) = 0?

11.3 Hamiltonian action and its variation

The first problem is solved using the so-called invariant integral of Poincaré and the
concept of the Hamiltonian action defined by (see Fig. 11.1)

I (α) :=
∫ t1(α)

t0(α)

L(τ,q(τ,α), q̇(τ,α))dτ, α ∈ [0,1] . (11.6)
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Figure 11.1 A family of trajectories of a Hamiltonian system in the extended state space with two initial
and final contours.

Its derivative on α is

I ′(α) = L(t1(α),q(t1(α)), q̇(t1(α))) t ′1(α)−
L(t0(α),q(t0(α)), q̇(t0(α))) t ′0(α)+
∫ t1(α)

t0(α)

[

∇ᵀ
q L(τ,q(τ,α), q̇(τ,α))

∂q(τ,α)

∂α
+

∇ᵀ
q̇ L(τ,q(τ,α), q̇(τ,α))

∂q̇(τ,α)

∂α
dτ

]

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.7)

Let us use the short notations:

Lt=t1(α) := L(t1(α),q(t1(α)), q̇(t1(α))),

Lt=t0(α) := L(t0(α),q(t0(α)), q̇(t0(α))),

Lτ,α := L(τ,q(τ,α), q̇(τ,α)).

Therefore we have

δI (α) = Lt=t1(α)δ t1(α) − Lt=t0(α) δt0(α)+
∫ t1(α)

t0(α)

n
∑

i=1

[
∂Lτ,α

∂qi

δqi(τ,α) + ∂Lτ,α

∂q̇i

δq̇i(τ, α)

]

dτ,

⎫

⎪⎪⎬

⎪⎪⎭

(11.8)

where for τ ∈ (t0(α), t1(α))
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δqi(τ,α) = ∂qi(τ,α)

∂α
δα := [δqi]τ .

Integration by parts leads to the following expression:

δI (α) = Lt=t1(α)δ t1(α) − Lt=t0(α) δt0(α)+
∫ t1(α)

t0(α)

n
∑

i=1

[
∂Lτ,α

∂qi

− d

dτ

∂Lτ,α

∂q̇i

]

δqi(τ,α)dτ+

n
∑

i=1

∂Lτ,α

∂q̇i
︸ ︷︷ ︸

pi(τ,α)

δqi(τ,α) |t=t1(α) −
n
∑

i=1

∂Lτ,α

∂q̇i
︸ ︷︷ ︸

pi(τ,α)

δqi(τ,α) |t=t0(α)=

Lt=t1(α)δ t1(α) − Lt=t0(α) δt0(α)+
n
∑

i=1

pi(t1(α),α)δqi(t1(α),α) −
n
∑

i=1

pi(t0(α),α)δqi(t0(α),α)

+
∫ t1(α)

t0(α)

n
∑

i=1

[
∂Lτ,α

∂qi

− d

dτ

∂Lτ,α

∂q̇i

]

δqi(τ,α)dτ.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.9)

For the variations of the terminal conditions we have (s = 0,1)

δqi(ts(α),α) = q̇i (ts(α),α)δts(α) + ∂qi(ts(α),α)

∂α
δα =

q̇i (ts(α),α)δts(α) + [δqi]ts (α) ,

⎫

⎪⎬

⎪⎭

which gives

δqi(ts(α),α) = [δqi]ts (α) + q̇i (ts(α),α)δts(α), s = 0,1. (11.10)

Recalling that

H (t,q,p) =
[

n
∑

i=1

piq̇i − L(t,q, q̇)

]

q̇=q̇(t,q,p)

,

[L(t,q, q̇)] ˙q=q̇(t,q,p) =
n
∑

i=1

piq̇i (t,q,p) − H (t,q,p) ,
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substitution of (11.10) into (11.9) leads to the relation

δI (α) =
[

n
∑

i=1

piq̇i (t,q,p) − H (t,q,p)

]

t=t1(α)

δ t1(α)+

n
∑

i=1

pi(t1(α),α)
[

[δqi]t1(α) + q̇i (t1(α),α)δt1(α)
]

−
[

n
∑

i=1

piq̇i (t,q,p) − H (t,q,p)

]

t=t0(α)

δt0(α)−

n
∑

i=1

pi(t0(α),α)
[

[δqi]t0(α) + q̇i (t0(α),α)δt0(α)
]

∫ t1(α)

t0(α)

n
∑

i=1

[
∂Lτ,α

∂qi

− d

dτ

∂Lτ,α

∂q̇i

]

δqi(τ,α)dτ.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Simplification of the last equation gives

δI (α) =
n
∑

i=1

pi(t1(α),α) [δqi]t1(α) − [H (t,q,p)]t=t1(α) δ t1(α)

−
(

n
∑

i=1

pi(t0(α),α) [δqi]t0(α) − [H (t,q,p)]t=t0(α) δ t0(α)

)

+
∫ t1(α)

t0(α)

n
∑

i=1

[
∂Lτ,α

∂qi

− d

dτ

∂Lτ,α

∂q̇i

]

δqi(τ,α)dτ.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Defining

[
n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]t=t1(α)

t=t0(α)

:=

n
∑

i=1

pi(t1(α),α) [δqi]t1(α) − [H (t,q,p)]t=t1(α) δ t1(α)−
(

n
∑

i=1

pi(t0(α),α) [δqi]t0(α) − [H (t,q,p)]t=t0(α) δ t0(α)

)

,

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

the last relation becomes
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δI (α) =
[

n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]t=t1(α)

t=t0(α)

+
∫ t1(α)

t0(α)

n
∑

i=1

[
∂Lτ,α

∂qi

− d

dτ

∂Lτ,α

∂q̇i

]

δqi(τ,α)dτ.

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11.11)

Remark 11.1. If the triple (t,q, q̇) corresponds to the dynamic path (line) of a real
mechanical system where

∂Lt,α

∂qi

− d

dτ

∂Lt,α

∂q̇i

= 0 (i = 1, ..., n) ,

then

δI (α) =
[

n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]t=t1(α)

t=t0(α)

. (11.12)

11.4 Integral invariants

Expression (11.12) for the variation of the Hamiltonian action in the extended space
(t,q,p) allows to establish two fundamental statements of mechanical systems.

11.4.1 Integral invariants of Poincaré and Poincaré–Cartan

Theorem 11.1 (Poincaré, 1885).1 For any Hamiltonian system the following properties
hold:

1 Jules Henri Poincaré (April 29, 1854–July 17, 1912) was a French mathematician, theoretical physicist,
engineer, and philosopher of science. He is often described as a polymath, and in mathematics as “the
last universalist,” since he excelled in all fields of the discipline as it existed during his lifetime. As
a mathematician and physicist, he made many original fundamental contributions to pure and applied
mathematics, mathematical physics, and celestial mechanics. In his research on the three-body problem,
Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of
modern chaos theory. He is also considered to be one of the founders of the field of topology.

Poincaré made the importance of paying attention to the invariance of laws of physics under different
transformations clear, and was the first to present the Lorentz transformations in their modern symmet-
rical form. Poincaré discovered the remaining relativistic velocity transformations and recorded them in
a letter to Hendrik Lorentz in 1905. Thus he obtained perfect invariance of all of Maxwell’s equations,
an important step in the formulation of the theory of special relativity. In 1905, Poincaré first proposed
gravitational waves (ondes gravifiques) emanating from a body and propagating at the speed of light as
being required by the Lorentz transformations.

The Poincaré group used in physics and mathematics was named after him.
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1. Integral Poincaré–Cartan invariant:

IP−K :=
∮

any contour C

[
n
∑

i=1

piδqi−H (t,q,p) δ t

]

= const
independently on contour C

.

(11.13)

2. Integral universal Poincaré invariant:

IP :=
∮

any contour Ct=const

n
∑

i=1

piδqi = const
independently on contour Ct=const

(11.14)

(it is referred to as universal invariant because of the independence of H (t,q,p),
that is, it is valid for all Hamiltonian systems).

Proof. 1. Consider two contours, C0 corresponding to time t0 (α) and C1 corre-
sponding to time t1 (α), as in Fig. 11.1. Taking into account that C is a contour
(I (α = 1) = I (α = 0)), from (11.12) we have

0 = I (1) − I (0) =
∫ 1

α=0
dI (α) =

∫ 1

α=0

[
n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]

t=t1(α)

dα−

∫ 1

α=0

[
n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]

t=t0(α)

dα =

∮

C1

[
n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]

−
∮

C0

[
n
∑

i=1

pi [δqi] − H (t,q,p) δ t

]

,

implying (11.13).
2. In this case we have δt0(α) = δt1(α) = 0 since both contours correspond to the

constant times t0(α) = const
α∈[0;1]

and t1(α) = const
α∈[0;1]

(see Fig. 11.2). That is why

[IP−K ]Ct=const
=
∮

Ct=const

n
∑

i=1

pi [δqi] = IP .

11.4.2 The Lee Hwa Chung theorem

The following results (Lee, 1947) turned out to be very useful for a wide class of
applications.
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Figure 11.2 A family of trajectories of a Hamiltonian system in the extended state space with two initial
and final contours: both correspond to constant times.

Theorem 11.2 (Lee Hwa Chung, 1947). If the contour integral

ILHC =
∮

Ct=const

n
∑

i=1

[Ai (t,q,p) δqi + Bi (t,q,p) δpi]

=
∮

Ct=const

(

Aᵀ (t,q,p) δq + Bᵀ (t,q,p) δp
)

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(11.15)

does not depend on the contour Ct=const for any Hamiltonian system, or in other
words, it is universal, then there exists a constant c (independent on the considered
contour) such that

ILHC = cIP . (11.16)

Proof. Since both integrals are constants, there exists a constant c1 (may be dependent
on the considered contour C

(1)
t=const) such that (omitting arguments)

∮

C
(1)
t=const

(

Aᵀδq + Bᵀδp
)= c1

∮

C
(1)
t=const

pᵀδq,

or equivalently,

∮

C
(1)
t=const

(

[A − c1p]ᵀ δq + Bᵀδp
)= 0. (11.17)

Since the integral (11.17) is equal to zero for any value of the variable t ∈ C
(1)
t=const

and for any arbitrary path C
(1)
t=const of integration, the expression under the sign of the

integral must be a total differential of some function 	(q,p). Therefore

0 =
∮

C
(1)
t=const

δ	 =
∮

C
(1)
t=const

[(
δ	

δq

)ᵀ
δq +

(
δ	

δp

)ᵀ
δp
]

,
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with

δ	

δq
= A − c1p and

δ	

δp
= B. (11.18)

Since t = const, here we have
δ

δqi

= ∂

∂qi

and
δ

δpi

= ∂

∂pi

. Taking into account that for

smooth functions

∂2	

∂pi∂qi

= ∂2	

∂qi∂pi

and hence

∂2	

∂p∂q
=
(

∂2	

∂q∂p

)ᵀ
,

from this property and in view of (11.18) it follows that

∂A

∂p
− c1In×n =

(
∂B

∂q

)ᵀ
. (11.19)

But the same is true for another contour C
(1)
t=const with another constant c2, namely,

∂A

∂p
− c2In×n =

(
∂B

∂q

)ᵀ
. (11.20)

Comparing (11.19) and (11.20) we conclude that c1 = c2 = c and

∂A

∂p
− cIn×n =

(
∂B

∂q

)ᵀ
, (11.21)

which proves the theorem.

Example 11.1. Let us consider the single-dimensional case with n = 1 and the inte-
gral

I =
∮

Ct=const

[A(t, q,p)δq + B(t, q,p)δp] ,

with

A = p

q
and B = q + ln(q).

We wish to know whether this integral is universal. If it is universal, then by the Lee
Hwa Chung theorem, Theorem 11.2, and in view of (11.21) the following property
should be satisfied:

∂

∂p
(A − cp) = ∂

∂q
B,
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or

∂

∂p

(
p

q

)

− c = ∂

∂q
(q + lnq) ,

which gives

1

q
− c = 1 + 1

q

and

c = −1.

So, indeed there exists a constant c = −1, satisfying (11.21), and hence the considered
integral I is universal.

11.5 Canonicity criteria

11.5.1 Poincaré theorem: (c,F )-criterion

Theorem 11.3 (Poincaré). A pair ϕ and ψ of the coordinates transformation

q̃i = ϕi(t,q,p), p̃i = ψi(t,q,p) (i = 1, ..., n) (11.22)

is canonical if and only if there exist a constant c and a function F(t,q,p) such that

n
∑

i=1

ψiδϕi − c

n
∑

i=1

piδqi = −δF, (11.23)

where

δϕi := dϕi − ∂ϕ

∂t
dt, δF := dF − ∂F

∂t
dt.

Proof. a) Necessity. Suppose that {ϕ,ψ} is a canonical couple for a Hamiltonian
system with the coordinates (q,p) and the Hamiltonian H(t,q,p) transforms
these coordinates into new ones

(

q̃, p̃
)

, satisfying the Hamiltonian equations
with the Hamiltonian H̃

(

t, q̃, p̃
)

. Take two arbitrary closed contours Ct=const and
C̃t=const in two different spaces (t,q,p) and

(

t, q̃, p̃
)

but corresponding to the
same fixed time t . Then by Theorem 11.1 we have

∮

Ct=const

(
n
∑

i=1

piδqi − H (t,q,p) δ t

)

=
∮

Ct=const

n
∑

i=1

piδqi,

∮

Ct=const

(
n
∑

i=1

p̃iδq̃i − H
(

t, q̃, p̃
)

δ t

)

=
∮

Ct=const

n
∑

i=1

p̃iδq̃i .
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Using (11.22) we get
∮

Ct=const

n
∑

i=1

p̃iδq̃i =
∮

Ct=const

n
∑

i=1

ψi(t,q,p)δϕi(t,q,p) =
∮

Ct=const

n
∑

i=1

ψi(t,q,p)

[(
δϕi(t,q,p)

δq

)ᵀ
δq +

(
δϕi(t,q,p)

δp

)ᵀ
δp
]

=
∮

Ct=const

[(
n
∑

i=1

ψi(t,q,p)
δϕi(t,q,p)

δq

)ᵀ
δq

+
(

n
∑

i=1

ψi(t,q,p)
δϕi(t,q,p)

δp

)ᵀ
δp

]

=
∮

Ct=const

(

Aᵀ (t,q,p) δq + Bᵀ (t,q,p) δp
)

,

where

A(t,q,p) =
n
∑

i=1

ψi(t,q,p)
δϕi(t,q,p)

δq

and

B (t,q,p) =
n
∑

i=1

ψi(t,q,p)
δϕi(t,q,p)

δp
.

Then by the Lee Hwa Chung theorem, Theorem 11.15, it follows that there exists
a constant c such that

∮

Ct=const

n
∑

i=1

p̃iδq̃i =
∮

Ct=const

(

Aᵀ (t,q,p) δq + Bᵀ (t,q,p) δp
)

= c

∮

Ct=const

n
∑

i=1

piδqi,

which gives
∮

Ct=const

(
n
∑

i=1

ψiδϕi − c

n
∑

i=1

piδqi

)

= 0.

Since the last expression is true for any arbitrary contour Ct=const, the expression
under the integral should be a total differential of some function 	 of (q,p)

variables, namely,
n
∑

i=1

ψiδϕi − c

n
∑

i=1

piδqi = δ	.

Defining F := −	, we get (11.23).
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b) Sufficiency. Suppose that (11.23) holds. We need to demonstrate that there exists
a Hamiltonian function H̃

(

t, q̃, p̃
)

such that

d

dt
q̃ = ∂

∂p̃
H̃
(

t, q̃, p̃
)

and
d

dt
p̃ = − ∂

∂q̃
H̃
(

t, q̃, p̃
)

.

Integrating (11.23) on some contour Ct=const we obtain

∮

Ct=const

(
n
∑

i=1

ψiδϕi − c

n
∑

i=1

piδqi

)

= −
∮

Ct=const

δF = 0,

which implies

∮

Ct=const

n
∑

i=1

p̃iδq̃i =
∮

Ct=const

n
∑

j=1

ψjδϕj = c

∮

Ct=const

n
∑

i=1

piδqi .

Since the original system is Hamiltonian by the Poincaré theorem, Theorem 11.1,
it follows that

∮

Ct=const

n
∑

i=1

p̃iδq̃i = c

∮

Ct=const

n
∑

i=1

piδqi = cIP =

const
independently on contour Ct=const

.

Therefore a system in new coordinates is Hamiltonian too.

Definition 11.2. The function F is referred to as the generating function, and the
constant c as the valence of the canonical transformation {ϕ,ψ}.
Example 11.2. Let n = 1 and let the nonlinear transformation {ϕ,ψ} be given by

q̃ = qp, p̃ = ln
(

q20p17
)

. (11.24)

We need to establish if this transformation is canonical, finding valence c and gener-
ating function F . We have

ϕ = qp, ψ = ln
(

q20p17
)

= 20 lnq + 17 lnp

and
∮

Ct=const

[ψδϕ − cpδq] =
∮

Ct=const

[(20 lnq + 17 lnp)δ (qp) − cpδq] =
∮

Ct=const

[(20 lnq + 17 lnp − c)pδq + (20 lnq + 17 lnp)qδp] = 0.
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If F exists it should satisfy the equations

(20 lnq + 17 lnp − c)p =
− ∂

∂q
F and (20 lnq + 17 lnp)q = − ∂

∂p
F,

∂2

∂p∂q
F = ∂2

∂q∂p
F,

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11.25)

which gives

(20 lnq + 17 lnp − c) + 17 = (20 lnq + 17 lnp) + 20,

which is true for

c = −3.

So, we have found the valence. Now to find the generating function F , let us integrate
the second relation in (11.25):

−F =
∫

p

(20 lnq + 17 lnp)qdp = 20qp lnq + 17q

∫

p

lnpdp + f (q) .

To find F we need to recuperate f (q). Substituting this representation of F in the first
equation of (11.25) implies

− ∂

∂q
F = (20 lnq + 17 lnp − c)p = 20p lnq + 20p

+17
∫

p

lnpdp + d

dq
f (q) ,

d

dq
f (q) = 17p lnp − 17p − 17

∫

p

lnpdp,

f (q) =
(

17p lnp − 17p − 17
∫

p

lnpdp

)

q − const,

and, finally,

F = qp (17 − 37 lnq) + const.

So, the considered transformation (11.24) is canonical.

11.5.2 Analytical expression for the Hamiltonian after a
coordinate canonical transformation

Let us prove the following useful result.
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Theorem 11.4. If some integral

I	 :=
∮

any contour C

(
n
∑

i=1

piδqi − 	(t,q,p)δt

)

in the coordinate space (t,q,p) is constant for any arbitrary contour C, that is,

I	 = const
independently on contour C

,

then this system is Hamiltonian with H (t,q,p) such that

cH (t,q,p) = 	(t,q,p) + ∂

∂t
G(t,q,p) (11.26)

for some function G(t, q,p) and a constant c.

Proof. By the Poincaré theorem, Theorem 11.1, the considered system is Hamiltonian
if and only if the integral

IP−K :=
∮

any contour C

[
n
∑

i=1

piδqi − H (t,q,p) δt

]

is constant, namely,

IP−K = const
independently on contour C

.

Therefore we have

I	 = cIP−K

for some c, and as a result,

∮

any contour C

[
n
∑

i=1

piδqi − 	(t, q,p)δt

]

= c

∮

any contour C

[
n
∑

i=1

piδqi − Hδt

]

,

which gives

∮

any contour C

(cH − 	)δt = 0.

From this relation it follows that it is a complete integral over this contour:

(cH − 	)δt = dG = ∂G

∂t
δt +

n
∑

i=1

[
∂G

∂qi

δqi + ∂G

∂pi

δpi

]

,
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and since variations δt , δqi , and δpi are independent we get

cH − 	 − ∂G

∂t
= ∂G

∂qi

= ∂G

∂pi

= 0,

which gives (11.26).

Now we are ready to formulate the main result of this subsection.

Theorem 11.5. If a transformation {ϕ,ψ} is canonical, then the Hamiltonian
H̃
(

t, q̃, p̃
)

after a coordinate canonical transformation is as follows:

c1H̃
(

t, q̃, p̃
)=

(

cH (t,q,p) + ∂

∂t
F (t,q,p)

)

|q=q(q̃,p̃), p=p(q̃,p̃)

+ ∂

∂t
G(t, q̃, p̃).

(11.27)

Proof. Since the considered pair {ϕ,ψ} is canonical, the system (t,q,p) and
(

t, q̃, p̃
)

is Hamiltonian and by Theorem 11.1 we have

n
∑

i=1

ψiδϕi − c

n
∑

i=1

piδqi = −δF ⇔
n
∑

i=1

p̃iδq̃i − cHδt = c

(
n
∑

i=1

piδqi − Hδt

)

− δF ⇔
n
∑

i=1

p̃iδq̃i − cHδt = c

(
n
∑

i=1

piδqi − Hδt

)

−
(

dF − ∂

∂t
F δt

)

⇔
n
∑

i=1

p̃iδq̃i −
(

cH + ∂

∂t
F

)

δt = c

(
n
∑

i=1

piδqi − Hδt

)

− dF.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.28)

Integrating this identity over some arbitrary contour C̃ in the extended space
(

t, q̃, p̃
)

,
which corresponds to some contour C in the space (t,q,p), we get

IP−K :=
∮

any contour C̃

[
n
∑

i=1

p̃iδq̃i −
(

cH + ∂

∂t
F

)

δt

]

= const
independently on contour C̃

=
∮

any contour C

[

c

(
n
∑

i=1

piδqi − Hδt

)

− dF

]

=

c

∮

any contour C

(
n
∑

i=1

piδqi − Hδt

)

︸ ︷︷ ︸

IP−K

−
∮

any contour C

dF

︸ ︷︷ ︸

0

=

cIP−K = const
independently of contour C

.
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Hence, by Theorem 11.4 it follows that

	(t, q̃, p̃) =
(

cH + ∂

∂t
F

)

|q=q(q̃,p̃), p=p(q̃,p̃)

and

c1H̃
(

t, q̃, p̃
)= 	

(

t, q̃, p̃
)+ ∂

∂t
G(t, q̃, p̃) =

(

cH + ∂

∂t
F

)

|q=q(q̃,p̃), p=p(q̃,p̃) + ∂

∂t
G(t, q̃, p̃),

which proves the theorem.

Remark 11.2. The constant c1 is not equal to zero since
[
∑n

i=1 p̃iδq̃i − H̃ δt
]

is not

a total differential. Hence dividing (11.27) by c1 we obtain

H̃
(

t, q̃, p̃
)=

(

c̃H (t,q,p) + ∂

∂t
F̃ (t,q,p)

)

|q=q(q̃,p̃), p=p(q̃,p̃), (11.29)

where

c̃ = c/c1, F̃ = 1

c1

(

F + G̃
)

.

11.5.3 Brackets of Lagrange

Corollary 11.1. A functional pair {ϕ,ψ} is canonical if and only if there exists a
constant c such that:

1.

n
∑

i=1

[
∂ϕi

∂qj

∂ψi

∂qk

− ∂ϕi

∂qk

∂ψi

∂qj

]

:= [

qj , qk

]= 0 ∀j, k = 1, n, (11.30)

2.

n
∑

i=1

[
∂ϕi

∂pj

∂ψi

∂pk

− ∂ϕi

∂pk

∂ψi

∂pj

]

:= [

pj , qk

]= 0 ∀j, k = 1, n, (11.31)

3.

n
∑

i=1

[
∂ϕi

∂qj

∂ψi

∂pk

− ∂ϕi

∂pk

∂ψi

∂qj

]

:= [

qj ,pk

]= cδj,k, (11.32)

with
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cδj,k = c

{

1, for j = k,

0, for j �= k,
j, k = 1, n.

The expression
[

qj ,pk

]

is referred to as the brackets of Lagrange.

Proof. By (11.23) we have

n
∑

i=1

ψiδϕi − c

n
∑

i=1

piδqi = −δF.

Since

δF (t, q,p) =
n
∑

j=1

[
∂F

∂qj

δqj + ∂F

∂pj

δpj

]

and

δϕi =
n
∑

j=1

[
∂ϕi

∂qj

δqj + ∂ϕi

∂pj

δpj

]

,

we get

n
∑

i=1

ψi

n
∑

j=1

[
∂ϕi

∂qj

δqj + ∂ϕi

∂pj

δpj

]

− c

n
∑

i=1

piδqi =

n
∑

j=1

n
∑

i=1

ψi

[
∂ϕi

∂qj

δqj + ∂ϕi

∂pj

δpj

]

− c

n
∑

i=1

piδqi =

n
∑

i=1

n
∑

j=1

ψj

[
∂ϕj

∂qi

δqi + ∂ϕj

∂pi

δpi

]

− c

n
∑

i=1

piδqi =

n
∑

i=1

⎡

⎣

⎛

⎝

n
∑

j=1

ψj

∂ϕj

∂qi

− cpi

⎞

⎠ δqi +
n
∑

j=1

ψj

∂ϕj

∂pi

δpi

⎤

⎦=

−
n
∑

i=1

[
∂F

∂qi

δqi + ∂F

∂pi

δpi

]

.

This implies

− ∂F

∂qi

=
n
∑

j=1

ψj

∂ϕj

∂qi

− cpi, − ∂F

∂pi

=
n
∑

j=1

ψj

∂ϕj

∂pi

. (11.33)

Since F (t,q,p) is total differential in space (q,p) under the fixed t , the following
properties hold for all i, k:
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∂

∂qk

(
∂F

∂qi

)

= ∂

∂qi

(
∂F

∂qk

)

,

∂

∂pk

(
∂F

∂pi

)

= ∂

∂pi

(
∂F

∂pk

)

,

∂

∂pk

(
∂F

∂qi

)

= ∂

∂qi

(
∂F

∂pk

)

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(11.34)

Substituting (11.33) into (11.34) gives

∂

∂qk

⎛

⎝

n
∑

j=1

ψj

∂ϕj

∂qi

− cpi

⎞

⎠=
n
∑

j=1

(
∂ψj

∂qk

∂ϕj

∂qi

+ ψj

∂

∂qk

(
∂ϕj

∂qi

))

=

∂

∂qi

⎛

⎝

n
∑

j=1

ψj

∂ϕj

∂qk

− cpk

⎞

⎠=
n
∑

j=1

(
∂ψj

∂qi

∂ϕj

∂qk

+ ψj

∂

∂qi

(
∂ϕj

∂qk

))

,

which leads to (11.30). Analogously we may obtain (11.31). As for (11.32) we have

∂

∂pk

(
∂F

∂qi

)

= ∂

∂pk

⎛

⎝

n
∑

j=1

ψj

∂ϕj

∂qi

− cpi

⎞

⎠=
⎛

⎝

n
∑

j=1

[
∂ψj

∂pk

∂ϕj

∂qi

+ ψj

∂

∂pk

(
∂ϕj

∂qi

)]

− cδik

⎞

⎠=

∂

∂qi

(
∂F

∂pk

)

= ∂

∂qi

⎛

⎝

n
∑

j=1

ψj

∂ϕj

∂pk

⎞

⎠=

n
∑

j=1

(
∂ψj

∂qi

∂ϕj

∂pk

+ ψj

∂

∂qi

∂ϕj

∂pk

)

,

which leads to (11.32).

Example 11.3. We have the linear transformation

q̃ = Aq + Bp, p̃ = Cq + Dp.

Let us find the conditions, which matrices A, B, C, and D should satisfy, guaranteeing
that this transformation is canonical.

For this system

ϕi =
n
∑

s=1

(aisqs + bisps) , ψi =
n
∑

s=1

(cisqs + disps) .
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So,

0 = [

qj , qk

]=
n
∑

i=1

[
∂ϕi

∂qj

∂ψi

∂qk

− ∂ϕi

∂qk

∂ψi

∂qj

]

=
n
∑

i=1

[

aij cik − aikcik

]

,

which in matrix format is

AᵀC = CᵀA.

Analogously, 0 = [

pj ,pk

]

is equivalent to the relation

BᵀD = DᵀB

and finally,
[

qj ,pk

]= cδj,k gives

AᵀD − CᵀB = cIn×n.

11.5.4 Free canonical transformation and the S-canonicity
criterion

Let us consider stationary nonlinear transformations, which do not depend on time t ,
namely, let in (11.2)

q̃ = ϕ(q,p),

p̃ = ψ(q,p).

}

(11.35)

In view of the condition (11.3) there exists an inverse transformation ϕ̃ such that

p = ϕ̃(q, q̃), (11.36)

which leads to the following representation of p̃:

p̃ = ψ(q, ϕ̃(q, q̃)) = ψ̃(q, q̃). (11.37)

Definition 11.3. Nonlinear transformations
(

ϕ̃, ψ̃
)

, defined by the relations (11.36)

and (11.37), are referred to as free transformations.

Theorem 11.6 (S-canonicity criterion). The free nonlinear transformation
(

ϕ̃, ψ̃
)

(see (11.35)) is canonical if and only if there exist a constant c and a function
S(t,q, q̃) such that for all i = 1, ..., n the following relations hold:

∂S(t,q, q̃)

∂qi

= cpi,
∂S(t,q, q̃)

∂q̃i

= −p̃i , (11.38)

wherein

H̃ (t,q, q̃) = cH(t,q,p) |p=p(q̃,ψ̃(q,q̃))
+∂S(t,q, q̃)

∂t
. (11.39)
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Proof. In view of the transformation (11.36) the generating function F(t,q,p)

in (11.23) can be represented as

F(t,q,p) = F(t,q, ϕ̃(q, q̃)) := S(t,q, q̃), (11.40)

whose total differential has the form

dF = dS = ∂S

∂t
δt +

n
∑

i=1

[
∂S

∂qi

δqi + ∂S

∂q̃i

δq̃i

]

.

Since we also have

dF = ∂F

∂t
δt +

n
∑

i=1

[
∂F

∂qi

δqi + ∂F

∂pi

δpi

]

,

the last relation in (11.29) gives

n
∑

i=1

p̃iδq̃i − H̃ δt = c

(
n
∑

i=1

piδqi − Hδt

)

− dF =

c

(
n
∑

i=1

piδqi − Hδt

)

− ∂S

∂t
δt −

n
∑

i=1

[
∂S

∂qi

δqi + ∂S

∂q̃i

δq̃i

]

=
n
∑

i=1

(

cpi − ∂S

∂qi

)

δqi +
n
∑

i=1

(

− ∂S

∂q̃i

)

δq̃i +
(

−cH − ∂S

∂t

)

δt.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.41)

Equating the coefficients of δqi , δq̃i , and δt in (11.41) we get (11.38) and (11.39).

Example 11.4. We need to check if the transformations

q̃1 = (γp1 + q2)
−1 − q1, q̃2 = 2

γp2 + q1
− 2q2,

p̃1 = −(γp1 + q2), p̃2 = −1

2
(γp2 + q1)

⎫

⎪⎪⎬

⎪⎪⎭

(11.42)

with γ �= 0 are free canonical or not. To answer the question we need to find a con-
stant c and a function S(t,q, q̃) satisfying (11.38). Resolving (11.42) with respect to
p1 and p2, we get

p1 = 1

γ

[
1

q̃1 + q1
− q2

]

, p2 = 1

γ

[
2

q̃2 + 2q2
− q1

]

.

Substitution of these expressions in the formulas for p̃1 and p̃2 gives

p̃1 = −
[

1

q̃1 + q1
− q2

]

− q2 = −
(

1

q̃1 + q1
+ q2 − q2

)

= − 1

q̃1 + q1
:= ∂S

∂q̃1
,
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p̃2 = −1

2
(γp2 + q1) = −1

2

[
2

q̃2 + 2q2
− q1

]

− 1

2
q1

= −1

2

(
2

q̃2 + 2q2
− q1 + q1

)

= − 1

q̃2 + 2q2
:= ∂S

∂q2
.

By Theorem 11.6 we should have

∂S(t,q, q̃)

∂q̃1
= −p̃1 = 1

q̃1 + q1
,

∂S(t,q, q̃)

∂q̃2
= −p̃2 = 1

q̃2 + 2q2
.

(11.43)

Resolving the first equation in (11.43) with respect to the function S(t,q, q̃) we find

S(t,q, q̃) = ln (q̃1 + q1) + f (q̃2, q1, q2, t).

Substituting this formula for S(t,q, q̃) into the second formula in (11.43) gives

∂f (q̃2, q1, q2, t)

∂q̃2
= 1

q̃2 + 2q2
.

Integrating this equation with respect to q̃2 we find

f (q̃2, q1, q2, t) = ln(q̃2 + 2q2) + f1(q1, q2, t),

which implies

S(t,q, q̃) = ln (q̃1 + q1) + ln(q̃2 + 2q2) + f1(q1, q2, t). (11.44)

Recalling now that

∂S(t,q, q̃)

∂q1
= cp1,

after the substitution of (11.44) in this relation it follows that

1

q̃1 + q1
+ ∂f1(q1, q2, t)

∂q1
= cp1 = c

γ

[
1

q̃1 + q1
− q2

]

.

Taking

c = γ,

we derive

∂f1(q1, q2, t)

∂q1
= −q2,



The Hamilton–Jacobi equation 359

which leads to

f1(q1, q2, t) = −q1q2 + f2(q2, t)

and

S(t,q, q̃) = ln (q̃1 + q1) + ln(q̃2 + 2q2) − q1q2 + f2(q2, t).

Analogously, we derive

∂S(t,q, q̃)

∂q2
= 2

q̃2 + 2q2
− q1 + ∂f2(q2, t)

∂q2
= cp2 =

c
1

γ

[
2

q̃2 + 2q2
− q1

]

.

Since c = γ , we get

∂f2(q2, t)

∂q2
= 0,

which is why

f2(q2, t) = f3(t),

where f3(t) is an arbitrary function of t . So finally,

S(t,q, q̃) = S(t,q, q̃) = ln (q̃1 + q1) + ln(q̃2 + 2q2) − q1q2 + f3(t).

This means that we have found the constant c and the function S(t,q, q̃), satisfy-
ing (11.38), and therefore the nonlinear free transformation (11.42) is canonical.

Example 11.5. For the nonlinear transformation

q̃i = lnpi − qi, p̃i = −pi (i = 1, ..., n) (11.45)

we need to check if it is a free canonical transformation finding S(t,q, q̃) and c.
From (11.45) it follows that

pi = exp (q̃i + qi) , p̃i = − exp (q̃i + qi) .

By Theorem 11.6 we should have

∂S(t,q, q̃)

∂q̃i

= −p̃i = exp (q̃i + qi) .

Integrating this equation with respect to the variables q̃i gives

S(t,q, q̃) = eq̃i+qi + fi

(

q̃j �=i , qi, t
)

.
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Substituting this expression into

∂S(t,q, q̃)

∂q̃j �=i

= −p̃j �=i

leads to

∂S(t,q, q̃)

∂q̃j �=i

= −p̃j �=i = ∂f
(

q̃j �=i , qi , t
)

∂q̃j �=i

= exp
(

q̃j �=i + qj �=i

)

,

implying

fi

(

q̃j �=i , qi, t
)= exp

(

q̃j �=i + qj �=i

)+ fi,j

(

q̃k �=i,j , qi, qj , t
)

.

Iterating this process we get

S(t,q, q̃) =
n
∑

i=1

eq̃i+qi + f (q, t) .

Analogously, substitution of the last formula for S(t,q, q̃) into

∂S(t,q, q̃)

∂qi

= cpi

leads to

∂S(t,q, q̃)

∂qi

= eq̃i+qi + ∂f (q, t)

∂qi

= cpi = c exp (q̃i + qi) .

Taking

c = 1

we obtain for all i = 1, ..., n

∂f (q, t)

∂qi

= 0,

which is equivalent to

f (q, t) = f0(t),

implying

S(t,q, q̃) =
n
∑

i=1

eq̃i+qi + f0(t),

which means the transformation (11.45) is free canonical.
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11.6 The Hamilton–Jacobi equation

As mentioned in Section 7.2, the main idea of the Hamiltonian approach consists in
finding the canonical transformation such that in new transformed variables the corre-
sponding Hamiltonian would be equal to zero. Using free canonical transformations

p = ϕ̃(q, q̃), p̃ = ψ(q, ϕ̃(q, q̃)) = ψ̃(q, q̃), (11.46)

we have the following expression for the new Hamiltonian (see (11.39)):

H̃ (t,q, q̃) = cH(t,q,p) |p=p(q̃,ψ̃(q,q̃))
+∂S(t,q, q̃)

∂t
, (11.47)

where the function S(t,q, q̃) satisfies the relations (11.38), namely,

∂S(t,q, q̃)

∂qi

= cpi,
∂S(t,q, q̃)

∂q̃i

= −p̃i (i = 1, ..., n) , (11.48)

for some scalar c �= 0.
The following result is one the main results in this chapter.

Theorem 11.7 (Hamilton–Jacobi). If there exists a solution S(t,q, q̃) of the partial
differential equation

∂

∂t
S(t,q, q̃) + cH(t,q,

1

c

∂

∂q
S(t,q, q̃)) = 0, (11.49)

which satisfies the “non-singularity condition”

det

[
∂2

∂q̃∂q
S(t,q, q̃))

]

�= 0 for any q, q̃ ∈ Rn and t ≥ 0

and satisfies the S-canonicity criterion (see Theorem 11.6), then

q̃i = αi = const
t

= ϕi(t,q,p),

p̃i = βi = const
t

= ψi(t,q,p),

⎫

⎬

⎭
(11.50)

and the dynamics in the original space (t,q,p) for all i = 1, ..., n satisfies the equa-
tions

∂S(t,q,α)

∂αi

= −βi,

∂

∂qi

S(t,q,α) = cpi.

⎫

⎪⎪⎬

⎪⎪⎭

(11.51)

Proof. Taking in (11.47) H̃ (t,q, q̃) = 0, after the substitution of p̃ from (11.48) in the
obtained equation we get the Hamilton–Jacobi equation (11.49). If there exists a non-
singular solution S(t,q, q̃) of (11.49) satisfying the S-canonicity criterion (11.48), in



362 Classical and Analytical Mechanics

view of the main Hamiltonian equations

d

dt
q̃ = ∂

∂p̃
H̃ = 0,

d

dt
p̃ = − ∂

∂q̃
H̃ = 0,

we find (11.50). Since our transformations are free (see Definition 11.3) and non-
singular, we are able to resolve the first equation in (11.51), obtaining

q = q(t,α,β) (11.52)

and

p = 1

c

∂

∂q
S(t,q(t,α,β),α). (11.53)

11.7 Complete integral of the Hamilton–Jacobi equation

11.7.1 Complete integral

In this section we will present the method helping to find the solution of the Hamilton–
Jacobi (HJ) equation for stationary systems.

Definition 11.4. A function S(t,q, q̃), which is a non-singular solution of (11.49), is
referred to as a complete integral of this HJ equation.

Remark 11.3. To obtain a solution S(t,q, q̃) of the HJ equation (11.49) it is suffi-
cient to take c = 1, since it follows from (11.49) that if S(t,q, q̃) is a solution, then

S̃(t,q, q̃) = 1

c
S(t,q, q̃) is also a solution.

11.7.2 Generalized-conservative (stationary) systems with first
integrals

For the class of generalized-conservative (stationary) systems

∂H

∂t
= 0

we have H = const
t

(see Lemma 10.4). Let us try to find the solution of (11.49) in the

form

S(t,q, q̃) = S(t,q,ϕ(t,q,p)) = −ht + V (q,p), (11.54)

where h is a constant. Then the HJ equation (11.49) with c = 1 becomes equal to

h = H(q,
∂

∂q
V (q,p)). (11.55)
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Consider now the class of conservative systems where the variables are grouped as

H = H (ϕ1 (q1,p1) , ϕ2 (q2,p2) , · · · , ϕn (qn,pn)) . (11.56)

Then {ϕi (qi,pi)}ni=1, as follows from Lemma 10.6, are the first integrals of the sys-
tem, that is,

ϕi (qi (t) ,pi (t)) = αi, (11.57)

implying

pi = 	i(qi, αi) (i = 1, ..., n) .

Recalling that in view of (11.48) and (11.54) for c = 1 we have

pi = ∂S(t,q, q̃)

∂qi

= ∂

∂qi

V (q,p) = 	i(qi, αi), (11.58)

the following result holds.

Theorem 11.8. In the considered case

V (q,p) =
n
∑

i=1

∫

	i(qi, αi)dqi (11.59)

and the complete integral S(t,q, q̃) (11.54) is

S(t,q, q̃) = −ht +
n
∑

i=1

∫

	i(qi, αi)dqi . (11.60)

Proof. It follows directly from (11.54), which is in this case

h = H(q,V (q,p)), (11.61)

and the relations (11.58).

Remark 11.4. From (11.55) and (11.61) it follows also that

h = h(α1, ..., αn) . (11.62)

Remark 11.5. The same representation (11.60) is valid if instead of (11.57) the sys-
tem

ϕi (q (t) , p (t)) = αi

is a complete system of other first integrals (not obligatorily structured as in (11.56)).

We consider now several examples.
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Example 11.6. Consider the Hamiltonian system with Hamiltonian

H = 1

2
(p1q2 + 2p1p2 + q2

1 ).

We need to realize the following steps:

– to present the dynamics of the system in the Hamiltonian canonical form;
– to find the solution of the obtained system of differential equations using the HJ

equation.

1. By (10.9) the Hamiltonian canonical form is as follows:

q̇1 = ∂H

∂p1
= 1

2
(q2 + 2p2), q̇2 = ∂H

∂p2
= p1,

ṗ1 = −∂H

∂q1
= −q1, ṗ2 = −∂H

∂q2
= 1

2
p1.

2. Since
∂H

∂t
= 0, the corresponding HJ equation (11.49) is

∂S

∂t
+ 1

2
(
∂S

∂q1
q2 + 2

∂S

∂q1

∂S

∂q2
+ q2

1 ) = 0,

where

S = −ht + V (q,p),

satisfying

h = H(q,V (q,p)).

Taking into account the representation

H = 1

2

[

p1(q2 + 2p2) + q2
1

]

,

we find that the first integrals are

ϕ2 = q2 + 2p2 := α2, ϕ1 = p1α2 + q2
1 := α1,

implying

h = 1

2
α1.

Resolving the equations above, we get

p1 = α1 − q2
1

α2
:= 	1, p2 = α2 − q2

2
:= 	2
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and by (11.59) and (11.60)

V :=
∫

α1 − q2
1

α2
dq1 +

∫
α2 − q2

2
dq2 =

α1

α2
q1 − 1

3α2
q3

1 + α2

2
q2 − q2

2 ,

which gives

S (t,q,α) = −1

2
α1t + α1

α2
q1 − 1

3α2
q3

1 + α2

2
q2 − q2

2 .

By (11.51) it follows that

−β1 = ∂S

∂α1
= −1

2
t + 1

α2
q1,

−β2 = ∂S

∂α2
= 1

3α2
2

q3
1 + 1

2
q2,

which is why

q1(t,α,β) = α2(
t

2
− β1)

and

q2(t,α,β) = −2

[

β2 + 1

3α2
2

q3
1

]

= −2

[

β2 + α2

3
(
t

2
− β1)

3
]

.

The corresponding p can be found using (11.51) again:

p1(t,α,β) = ∂S

∂q1
= α1

α2
− 1

α2
q2

1 = α1

α2
− α2(

t

2
− β1)

2,

p2(t,α,β) = ∂S

∂q2
= α2

2
− 2q2 = α2

2
+ 4

[

β2 + α2

3
(
t

2
− β1)

3
]

.

The constants α, β can be found from the following system of algebraic equations,
obtained by the initial conditions:

q1(0,α,β) = q1,0 = −α2β1,

q2(0,α,β) = q2,0 = −2
[

β2 − α2

3
β3

1

]

,

p1(0,α,β) = p1,0 = α1

α2
+ α2β

2
1 = α1

α2
− q1,0β1,

p2(0,α,β) = p2,0 = α2

2
+ 4

[

β2 − α2

3
β3

1

]

= α2

2
− 2q2,0.

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(11.63)
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Example 11.7. Consider the Lagrangian conservative dynamic system with the La-
grangian

L(t,q, q̇) = 1

2
(q̇2

1q2
1 + q̇2

2q2
2 + q̇2

3 ) − cosq1.

We need to find the dynamics q = q (t,q (0) , q̇ (0)) using the Hamiltonian approach.
The state variable q ∈ R3 satisfies the following Lagrange equation (see (10.1)):

d

dt

∂

∂q̇
L(t,q, q̇) − ∂

∂q
L(t,q, q̇) = 0,

or, in the open format,

q̈1
q2

1

2
+ sinq1 = 0, q̈2q

2
2 + q̇2

2q2 = 0, q̈3 = 0.

The generalized impulses pi are as follows:

p1 = ∂L

∂q̇1
= q2

1 q̇1, p2 = ∂L

∂q̇2
= q2

2 q̇2, p3 = ∂L

∂q̇3
= q̇3.

The Hamiltonian H is equal to

H =
[

3
∑

i=1

piq̇i − L(t,q, q̇)

]

q̇=q̇(q,p)

=

p2
1

q2
1

+ p2
2

q2
2

+ p2
3 − 1

2

(

p2
1

q2
1

+ p2
2

q2
2

+ p2
3

)

+ cosq1 =

1

2

(

p2
1

q2
1

+ p2
2

q2
2

+ p2
3

)

+ cosq1

and the Hamiltonian canonical form is

q̇1 = ∂

∂p1
H = p1

q2
1

, q̇2 = ∂

∂p2
H = p2

q2
2

, q̇3 = ∂

∂p3
H = p3,

ṗ1 = − ∂

∂q1
H = p2

1

q3
1

+ sinq1, ṗ2 = − ∂

∂q2
H = p2

2

q3
2

, ṗ3 = − ∂

∂q3
H = 0.

The HJ equation in S-format with c = 1 is

∂S

∂t
+ cosq1 + 1

2

[

1

q2
1

(
∂S

∂q1

)2

+ 1

q2
2

(
∂S

∂q2

)2

+
(

∂S

∂q3

)2
]

= 0.

For this system the first integrals are

1

2

p2
1

q2
1

+ cosq1 = α1,
1

2

p2
2

q2
2

= α2,
1

2
p2

3 = α3,
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which allows to express the generalized impulses as

p1 = ±
√

2q2
1 (α1 − cosq1) := 	1, α1 ≥ cosq1,

p2 = ±√

2α2 |q2| := 	2, p3 = ±√

2α3 := 	3.

By (11.60) we have

S (t,q,α) = −ht +
n
∑

i=1

∫

	i(qi, αi)dqi = −ht

±
∫ √

2q2
1 (α1 − cosq1)dq1 ±

∫
√

2α2 |q2|dq2 ±
∫

√

2α3dq3 =

−ht ±
∫ √

2q2
1 (α1 − cosq1)dq1 ±

√

α2

2
q2

2 ±√

2α3q3.

Note that in view of the relation h = H it follows that

h = α1 + α2 + α3.

Then, by (11.51), we get

∂S

∂α1
= −β1 = −t ±

∫
q2

1
√

2q2
1 (α1 − cosq1)

dq1,

∂S

∂α2
= −β2 = −t ± 1

2

√

1

2α2
q2

2 ,

∂S

∂α3
= −β3 = −t ±

√

1

2α3
q3.

From these relations we find

q2 = ∓
√

2
√

2α2(t − β2), t ≥ β2,

q3 = ∓√

2α3 (t − β3) ,

and

p1(t,α,β) = ∂S

∂q1
= ±

√

2q2
1 (α1 − cosq1),

p2(t,α,β) = ∂S

∂q2
= ±√

2α2q2 = (2α2)
3/4

√

2(t − β2),

p3(t,α,β) = ∂S

∂q3
= ±√

2α3.

The constants α1, α2, and α3 can be found from these last relations putting t = 0
analogously as has been done in (11.63).
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Example 11.8. Let for a Hamiltonian system

S(t,q,α) = −
n
∑

i=1

qifi(t) −
n
∑

i=1

αiqi −
n
∑

i=1

∫

[fi(t) + αi]
2 dt.

We need:

– to find the Hamiltonian H(t,q,p);
– to obtain its first integrals;
– to define the differential equation and dynamics for q(t,α,β) in the Lagrange

form.

1. Since the considered system is Hamiltonian we have

−βi = ∂S

∂αi

= −qi − 2
n
∑

i=1

∫

[fi(t) + αi]dt,

from which it follows that

qi = βi − 2
n
∑

i=1

∫

[fi(t) + αi]dt = βi − 2
n
∑

i=1

∫

fi(t)dt − 2t

n
∑

i=1

αi.

We also have

pi = ∂S

∂qi

= −fi(t) − αi,

which gives

αi = −fi(t) − pi.

Recall that

∂S

∂t
+ H = 0,

which is why

H = −
[
∂S(t,q,α)

∂t

]

α=α(t,p)

=
[

n
∑

i=1

qi

d

dt
fi(t) +

n
∑

i=1

[fi(t) + αi]
2

]

α=α(t,p)

,

and, finally,

H(t,q,p) =
n
∑

i=1

(

qi

d

dt
fi(t) + p2

i

)

.



The Hamilton–Jacobi equation 369

2. By (10.6) we have

L(t,q, q̇) =
[

H(t,q,p) −
n
∑

i=1

piq̇i

]

p=p(t,q,q̇)

=
[

n
∑

i=1

(

qi

d

dt
fi(t) + p2

i

)

−
n
∑

i=1

piq̇i

]

p=p(t,q,q̇)

.

But

q̇i = ∂H

∂pi

= 2pi,

and therefore

L(t,q, q̇) =
n
∑

i=1

(

qi

d

dt
fi(t) − q̇2

i

4

)

.

3. Recalling that

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0,

we get the following dynamic equations:

1

2
q̈i + d

dt
fi(t) = 0.

After double integration we finally obtain

q̇i (t) = −2fi(t) + ci,1

and

qi (t) = −2
∫ t

τ=0
fi(τ )dτ + ci,1t + ci,2 =

qi (0) − 2
∫ t

τ=0
fi(τ )dτ + [q̇i (0) + 2fi(0)] t

for all i = 1, ..., n.

11.8 On relations with optimal control

This section shows the relation between the HJ equation in mechanics of conserva-
tive systems and the dynamic programming method (DPM) in optimal control theory.
Here we follow Chapter 3 of (Boltyanski and Poznyak, 2012). See also (Kwatny and
Blankenship, 2000) and (Levi, 2014).
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11.8.1 Problem formulation and value function

Let (s, y) ∈ [0, T ) × Rn be “an initial time and state pair” to the following control
system over [s, T ]:

ẋ (t) = f (x (t) , u (t) , t) , t ∈ [s, T ] ,

x (s) = y,

}

(11.64)

where x ∈ Rn is its state vector and u ∈ Rr is the control that may run over a given
control region U ⊂ Rr with the cost functional

J (s, y;u (·)) = h0(x (T )) +
∫ T

t=s

h (x (t) , u (t) , t) dt (11.65)

containing the integral term. Suppose that u(t) is partially continuous and functions f ,
h, and h0 are sufficiently smooth (for the details see (Boltyanski and Poznyak, 2012)).
Under these assumptions, for any initial (s, y) ∈ [0, T ) ×R

n and any admissible u(·)
the optimization problem

J (s, y;u (·)) → min
u(·)∈U

(11.66)

formulated for the plant (11.64) and for the cost functional J (s, y;u (·)) (see (11.65))
admits a unique solution

x (·) := x (·, s, y,u (·)) ,

and the functional (11.65) is well defined.

Definition 11.5 (Value function). The function V (s, y) defined for any (s, y) ∈
[0, T ) ×R

n as

V (s, y) := inf
u(·)∈U

J (s, y;u (·)) ,

V (T , y) = h0(y)

⎫

⎬

⎭
(11.67)

is called the value function of the optimization problem (11.66).

We will be interested in the solution of the optimal control problem (11.66) when
s = 0 and y = x (0).

11.8.2 Hamilton–Jacobi–Bellman equation

The following theorem presents the conditions for the admissible control u which
makes the value function V (0, x (0)) minimal.

Suppose that under the accepted assumptions the value function V (s, y) (11.67) is
continuously differentiable, that is, V ∈ C1 ([0, T ) ×R

n). Then V (s, y) is a solution
to the following terminal value problem of a first order partial differential equation,
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named below the Hamilton–Jacobi–Bellman (HJB) equation, associated with the
original optimization problem (11.66):

− ∂

∂t
V (t, x) + sup

u∈U

H(− ∂

∂x
V (t, x) , x(t), u(t), t) = 0,

(t, x) ∈ [0, T ) ×R
n,

V (T , x) = h0 (x) , x ∈R
n,

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(11.68)

where

H(ψ,x,u, t) := ψᵀf (x,u, t) − h(x (t) , u (t) , t)
(

t, x, u,ψ ∈ [0, T ] ×R
n ×R

r ×R
n
) (11.69)

is the Hamiltonian of the system (11.64) containing the adjoint vector ψ (t) ∈ R
n,

which satisfies the following system of ordinary differential equations:

ẋ (t) = ∂

∂ψ
H(ψ,x,u∗(·), t) = f

(

x,u∗(·), t) , x (0) = x0,

ψ̇ (t) = − ∂

∂x
H(ψ,x,u∗(·), t), ψ (T ) = − ∂

∂x
h0 (x (T )) .

⎫

⎪⎪⎬

⎪⎪⎭

(11.70)

Here

u∗(·) := u∗
(

t, x,
∂

∂x
V (t, x)

)

(11.71)

is a solution to the optimization problem

H(− ∂

∂x
V (t, x) , x,u, t) → sup

u∈U

(11.72)

with fixed values x, t , and
∂

∂x
V (t, x).

The proof can be found in (Boltyanski and Poznyak, 2012, Section 3.3) (see the
proof of Theorem 3.3).

Remark 11.6. As follows from this theorem:

• any dynamic system from the considered class, controlled by the optimal control
u∗(·) (see (11.71)), is Hamiltonian;

• the state vector x corresponds to the generalized coordinate q;
• the adjoint variable ψ plays the same role as the generalized impulses p in (10.9);
• the function h in (11.65) corresponds to the Lagrange function L.

11.8.3 Verification rule as a sufficient condition of optimality

The theorem below, representing the sufficient conditions of optimality, is referred to
as the verification rule.
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Theorem 11.9. We make the following assumptions:

1. Suppose that we can obtain the solution V (t, x) to the HJB equation

− ∂

∂t
V (t, x) + H(− ∂

∂x
V (t, x) , x,u∗ (·) , t) = 0,

V (T , x) = h0 (x) , (t, x) ∈ [0, T ) ×R
n,

⎫

⎬

⎭
(11.73)

which for any (t, x) ∈ [0, T ) ×R
n is unique and smooth, that is,

V ∈ C1 ([0, T ) ×R
n
) ;

2. Suppose that for any pair (s, x) ∈ [0, T ) × R
n there exists a solution x (s, x) to

the following ordinary differential equation:

ẋ (t) = f

(

x (t) , u∗
(

t, x (t) ,
∂

∂x
V (t, x (t))

)

, t

)

,

x∗ (s) = x,

⎫

⎪⎬

⎪⎭

(11.74)

satisfied for t ∈ [s, T ].

Then with (s, x) = (0, x) the pair (x (t) , u∗ (·)) is optimal, that is,

u∗ (·) = u∗
(

t, x (t) ,
∂

∂x
V (t, x) |x=x∗(t)

)

(11.75)

is an optimal control.

To apply the optimal control u∗ (·) (see (11.75)) we need to have at our disposi-
tion the function V (t, x), or in other words, we should be able to resolve the HJB
equation (11.73).

11.8.4 Affine dynamics with a quadratic cost

Definition 11.6. The plant (11.64) is called stationary and affine in control if the
right-hand side does not depend on t and is linear on u ∈ U = R

r , that is,

f (x (t) , u (t)) = f0 (x (t)) + f1(x (t))u (t) . (11.76)

Consider the loss functional (11.65) with h0(x) = 0 and the quadratic cost function

h(x,u) := ‖x‖2
Q + ‖u‖2

R ,

0 ≤ Q ∈R
n, 0 < R ∈R

r
(11.77)
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on the infinite horizon (T = ∞). Then (11.71) gives

u∗ (x) = arg sup
u∈Rr

H

(

− ∂

∂x
V (x) , x,u

)

=

max
u∈Rr

(

− ∂

∂x
V (x)ᵀ [f0 (x) + f1(x)u] − ‖x‖2

Q − ‖u‖2
R

)

= −1

2
R−1f1(x)ᵀ

∂

∂x
V (x)

(11.78)

and the corresponding HJ equation becomes as follows:

− ∂

∂x
V (x)ᵀ f0 (x) − ‖x‖2

Q + 1

4

∥
∥
∥
∥
R−1f1(x)ᵀ

∂

∂x
V (x)

∥
∥
∥
∥

2

R

= 0. (11.79)

Suppose also, for simplicity, that we deal with the special subclass of the affine sys-
tems (11.76) for which the matrix

[

f1(x)R−1f1(x)ᵀ
]

is invertible for any x ∈ R
n, that

is,

rank
[

f1(x)R−1f1(x)ᵀ
]

= n. (11.80)

Denote

Rf (x) :=
[

f1(x)R−1f1(x)ᵀ
]1/2

> 0, (11.81)

which, by (11.80), is strictly positive, and, hence, R−1
f (x) exists. Then Eq. (11.79)

may be rewritten as

r2 (x) := ‖x‖2
Q +

∥
∥
∥R

−1/2
f (x)f0 (x)

∥
∥
∥

2 =
1

4

∥
∥
∥
∥
R

1/2
f (x)

∂

∂x
V (x) − 2R

−1/2
f (x)f0 (x)

∥
∥
∥
∥

2

,

where

r (x) :=
√

‖x‖2
Q +

∥
∥
∥R

−1/2
f (x)f0 (x)

∥
∥
∥

2
.

This implies the following representation:

1

2
R

1/2
f (x)

∂

∂x
V (x) − R

−1/2
f (x)f0 (x) = ē (x) r (x) ,

ē (x) being a unitary vector (‖ē (x)‖ = 1) ,
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or, equivalently,

1

2

∂

∂x
V (x) = R−1

f (x)f0 (x) + R
−1/2
f (x) ē (x) r (x)

=
[

f1(x)R−1f1(x)ᵀ
]−1

f0 (x) + R
−1/2
f (x) ē (x) r (x) .

(11.82)

So, substitution of (11.82) into the optimal control (11.78) gives

u∗ (x) = −R−1f1(x)ᵀ
[

1

2

∂

∂x
V (x)

]

=

− R−1f1(x)ᵀ
([

f1(x)R−1f1(x)ᵀ
]−1

f0 (x)+

r (x)
[

f1(x)R−1f1(x)ᵀ
]−1

ē (x)

)

.

(11.83)

There exist many ways to select ē (x), but all of them have to guarantee the property

J (0, x (0) ;u (·)) =
∫ ∞

t=0

(

‖x (t)‖2
Q + ‖u (t)‖2

R

)

dt < ∞. (11.84)

Substituting (11.83) into (11.64) with s = 0 and y = x (0) leads to the final expression
for the optimal trajectory:

ẋ (t) = f (x (t) , u (t)) = f0 (x (t)) + f1(x (t))u∗ (t) = −r (x) ē (x) .

To guarantee (11.84), we need at least to satisfy the asymptotic stability property
‖x (T )‖ →

T →∞ 0. To select ē (x) satisfying this requirement, let us consider the function

V (x) = 1
2 ‖x‖2, for which we have

V̇ (x (t)) = xᵀ (t) ẋ (t) = −r (x) xᵀ (t) ē (x) .

Taking, for example,

ē (x) := 1√
n

SIGN(x),

SIGN(x) := (sign (x1) , ..., sign (xn)) ,

we get

V̇ (x (t)) = − r (x)√
n

xᵀ (t)SIGN(x (t)) =

− r (x)√
n

n
∑

i=1

|xi (t)| ≤ − r (x)√
n

√

2V (x (t)) < 0
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for x (t) �= 0. If, additionally, r (x) ≥ c > 0, then this inequality implies

V̇ (x (t) ≤ −
√

2

n
c
√

V (x (t))

and, as a result, V (x (t)) → 0 in the finite time

treach =√

nV (x (0))/c,

so that V (x (t)) = 0 and hence x (t) = 0 for any t ≥ treach, satisfying (11.84) with the
optimal control

u∗ (x) = −R−1f1(x)ᵀ
[

f1(x)R−1f1(x)ᵀ
]−1

[f0 (x) + r (x)SIGN(x)] .

(11.85)

11.8.5 The case when the Hamiltonian admits the existence of
first integrals

The next theorem represent the main idea of finding the HJB solution using the
notion of the first integrals. Let the system of n first integrals of a stationary
(

∂

∂t
f (x,u∗, t) = 0

)

H -Hamiltonian system

ϕi (x(t),ψ(t)) = αi (i = 1, ..., n) (11.86)

be solvable with respect to the vectors ψ1(t), ...,ψn(t), that is, for any x∗ ∈R
n

det

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

∂

∂ψ1
ϕ1 (x∗,ψ) · · · ∂

∂ψn

ϕ1 (x∗,ψ)

... · · · ...

∂

∂ψ1
ϕn (x∗,ψ) · · · ∂

∂ψn

ϕn (x∗,ψ)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

�= 0. (11.87)

Denote this solution by

ψi := Si (x,α) (i = 1, ..., n) . (11.88)

Then, as in (11.60), the solution to the HJB equation (11.73) is given by

V (s, y) = −h̃s −
n
∑

i=1

∫

Si (y,α) dyi, (11.89)

where the constants αi (i = 1, ..., n) and h̃ are related (for a given initial state x0) by
the equation

n
∑

i=1

∫

Si (y,α) dyi |y=x∗(T |T ,x0)=x0= −h̃T − h0 (x0) . (11.90)
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The optimal control u∗ (·) (see (11.75)) has the following form:

u∗ (·) = u∗ (t, x (t) ,−S (x,α) |x=x∗(t)

)

,

S (x,α) = (S1 (x,α) , ..., Sn (x,α))ᵀ .

}

(11.91)

Remark 11.7. It follows from (11.90) that the constant h̃ is a function of constants α

and initial conditions x0, namely,

h̃ = h̃ (α, x0) .

11.8.6 The deterministic Feynman–Kac formula: the general
smooth case

In the general case, when the system of n first integrals is not available, the solution
to the HJB equation (11.68), after substituting in it u∗ (·) (see (11.75)), is given by the
deterministic Feynman–Kac formula.

Suppose that the solution

x = x(t | 0, y)

of the Hamiltonian canonical equations (11.70) is solvable with respect to an initial
condition y for any t ∈ [0, T ], that is, there exists a function Y (t, x) such that for any
t ∈ [0, T ] and any x

x(t | 0, Y (t, x)) = x,

y = Y (t, x(t | 0, y)) ,

and, in particularly,

x(t | 0, Y (t, y)) = y,

which implies

x(t | 0, Y (t, y)) = y = Y (t, x(t | 0, y))

and

∂

∂y
x(t | 0, Y (t, y)) = I.

Define the function v (t, y) as

v (t, y) = h0 (y)+
∫ T

τ=t

[
∂

∂ψ
H (τ, x(τ | 0, y),ψ(τ | 0, y))ᵀ ψ(τ | 0, y)

−H (τ, x(τ | 0, y),ψ(τ | 0, y))]dτ.

(11.92)
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Then the function V (t, x) given by the formula

V (t, x) := v (t, Y (t, x)) (11.93)

is a solution (local) to the HJB equation (11.73).

Proof. a) Since

∂

∂y
x(t | 0, y) |t=0= I,

the equation x = x(t | 0, y) is solvable with respect to y for any small enough t ∈
(0, ε), that is, there exists a function Y (t, x) such that y = Y (t, x). Define the function

s (t, y) := −H

(

t, y,
∂

∂y
h0 (y)

)

−
∫ t

τ=0

∂

∂τ
H (τ, x(τ | 0, y),ψ(τ | 0, y)) dτ.

(11.94)

In view of (11.70), it follows that

d

dt
[s (t, y) + H (t, x(t | 0, y),ψ(t | 0, y)] =

− ∂

∂t
H (t, x(t | 0, y),ψ(t | 0, y)) + ∂

∂t
H (t, x(t | 0, y),ψ(t | 0, y))+

∂

∂x
H (t, x(t | 0, y),ψ (t | 0, y))ᵀ ẋ(t | 0, y)

︸ ︷︷ ︸

∂
∂ψ

H

+

∂

∂ψ
H (t, x(t | 0, y),ψ (t | 0, y))ᵀ ψ̇ (t | 0, y)

︸ ︷︷ ︸

− ∂
∂x

H

= 0.

(11.95)

From (11.94) for t = 0 we get

s (0, y) + H

(

0, y,
∂

∂y
h0 (y)

)

= 0,

which together with (11.95) implies

s (t, y) + H (t, x(t | 0, y),ψ (t | 0, y)) ≡ 0 (11.96)

for any t ∈ [0, ε]. In view of the property

H(− ∂

∂x
V (t, x) , x,u, t) = −H(

∂

∂x
V (t, x) , x,u, t),

to prove the theorem it is sufficient to show that

ψ (t | 0, y) = − ∂

∂y
V (t, y) (11.97)
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and

s (t, y) = − ∂

∂t
V (t, y) . (11.98)

b) For the vector function

U (t, y) := ∂

∂y
V (t, y) + ψ (t | 0, y) , (11.99)

which in view of (11.70) verifies

U (T ,y) = ∂

∂y
V (T , y) + ψ (T | 0, y) = ∂

∂y
h0 (y) + ψ (T | 0, y) = 0,

(11.100)

we have

d

dt
U (t, y) = ∂

∂y

d

dt
V (t, y) + ψ̇ (·) |(·)=(t |0,y)=

− ∂

∂y

[
∂

∂ψ
H (t, x(·),ψ(·))ᵀ ψ(·) − H (t, x(·),ψ(·))

]

|(·)=(t |0,y)

− ∂

∂x
H (t, x(·),ψ (·)) |(·)=(t |0,y)=

− ∂

∂y

[
∂

∂ψ
H (t, x(·),ψ(·))ᵀ ψ(·)

]

|(·)=(t |0,y) +
∂

∂x
H (t, x(·),ψ(·)) |(·)=(t |0,y)

∂

∂y
x(t | 0, Y (t, y)

︸ ︷︷ ︸

y

)

︸ ︷︷ ︸

I

− ∂

∂x
H (t, x(·),ψ (·)) |(·)=(t |0,y)=

− ∂

∂y

⎡

⎢
⎢
⎢
⎣

ᵀ
∂

∂ψ
H (t, x(·),ψ(·))

︸ ︷︷ ︸

f (x,u∗(·),t)

ψ(·)

⎤

⎥
⎥
⎥
⎦

|(·)=(t |0,y)= 0

(11.101)

since the term f (x,u∗(·), t)ψ(·) |(·)=(t |0,y) does not depend on y as well as
ψ(·) |(·)=(t |0,y) (it depends on the terminal, but not the initial condition y). Both prop-
erties (11.100) and (11.101) give

U (t, y) ≡ 0,

which proves (11.97).
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c) By (11.73) it follows that

H(− ∂

∂y
V (t, y) , y,u∗ (·) , t) = ∂

∂t
V (t, y) ,

but in view of (11.96) we have

s (t, y) = −H

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

t, x(t | 0, y),ψ (t | 0, y)
︸ ︷︷ ︸

− ∂

∂y
V (t,y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= − ∂

∂t
V (t, y) ,

which gives (11.98).

Corollary 11.2. It follows from (11.75) that

u∗ (·) = u∗
(

t, x (t) ,
∂

∂x
V (t, x) |x=x∗(t)

)

= u∗ (t, x,−ψ (t | 0, x) |x=x∗(t)
)

.

Remark 11.8. Note that the integral term

It :=
∫ T

τ=t

[
∂

∂ψ
H (τ, x(·),ψ(·))ᵀ ψ(τ | 0, y) − H (τ, x(·),ψ(·))

]

(·)=(τ |0,y)

dτ

(11.102)

in (11.92) is exactly equal to the Hamiltonian action (see (11.6))

I (α) :=
∫ t1(α)

t0(α)

L(τ,q(τ,α), q̇(τ,α))dτ, α ∈ [0,1]

with t0(α) = t and t1(α) = T . Indeed, recalling that

ẋ = ∂

∂ψ
H (τ, x(τ | 0, y),ψ(τ | 0, y))

and associating x with q and ψ with p, from (11.102) we get

It :=
∫ T

τ=t

[

ẋᵀ (τ )ψ(·) − H (τ, x(·),ψ(·))]
(·)=(τ |0,y)

dτ =
∫ T

τ=t

[

q̇ᵀ (τ )p(τ ) − H (τ,q(τ ),p(τ ))
]

(·)=(τ |0,y), p=p(t,q,q̇)
=

∫ T =t1(α)

t=t0(α)

L(τ,q(τ,α), q̇(τ,α))dτ = I (α).



380 Classical and Analytical Mechanics

Remark 11.9. Of course, the direct use of formula (11.92) in most real cases is not
possible, since analytical expressions for the integral term cannot be written out com-
pletely. However, the expression may be of interest in terms of its digital computer
implementation.

11.9 Exercises

Exercise 11.1. Show that the curvilinear integral

I =
∮ n

∑

i=1

([αipi + ϕi (qi)] δqi + [βiqi + ψi (pi)] δpi)

is a universal Poincaré invariant (see (11.14)) if

α1 − β1 = α2 − β2 = ... = αn − βn.

Exercise 11.2. The function f (q,p, t) is the first integral of the canonical system
with the Hamiltonian H (q,p, t). Prove that the integral

I =
∫

· · ·
∫

f (q,p, t) dq1dq2 · · · dqndp1dp2 · · · dpn

is an integral invariant (see (11.13)).

Exercise 11.3. Show that the necessary and sufficient condition for maintaining the
phase volume

v (t) =
∫∫

C⊂R2
dx1 (t) dx2 (t)

of the stationary linear dynamical system

ẋ1 = a11x1 + a12x2,

ẋ2 = a21x1 + a22x2,

x1 (0) = x10, x2 (0) = x20

⎫

⎪⎬

⎪⎭

is that this system is Hamiltonian with the Hamiltonian function

H = 1

2
a12x

2
2 + a11x1x2 − 1

2
a21x

2
1 ,

satisfying the condition

a11 + a22 = 0.

Hint. Use the following steps:
1.

ẋ = Ax =⇒ x (t) = eAtx (0) ,
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2.

v (t) =
∫∫

Ct⊂R2
dx (t) =

∫∫

C0⊂R2

∣
∣
∣
∣
det

∂x (t)

∂x (0)

∣
∣
∣
∣
dx (0) =

∫∫

C0⊂R2

∣
∣
∣det eAt

∣
∣
∣dx (0) =

∣
∣
∣det eAt

∣
∣
∣

∫∫

C0⊂R2
dx (0) =

∣
∣
∣det eAt

∣
∣
∣v (0)

(Ct is the contour corresponding C0),

3. apply the Liouville formula

det eAt = exp {(trA) t} = 1 for all t if an only if trA = 0,

which by Example 10.7 shows that the system is Hamiltonian.

Exercise 11.4. Find the full integral of the system with the Hamiltonian

H = pqf (t) + pψ (t)

and show that the law of the system’s motion is described by the relations

q (t) = exp

(∫

f (t) dt

)[

c +
∫

ψ (t) exp

(

−
∫

f (t) dt

)

dt

]

,

p (t) = c1 exp

(

−
∫

f (t) dt

)

.

Exercise 11.5. A body of mass m, connected to a fixed wall by a stiff spring c, can
slide along a smooth horizontal guide Ox. The force F (t) (|F (t)| ≤ F+) acts on the

body. At the initial moment of time, the body is motionless and is at a distance 6
F+

c
from the equilibrium position. Demonstrate that the change in the force F (t) at which
the body returns to the equilibrium position at zero speed in a minimum time is given
by the formula

F (t) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F+, for 0 ≤ t ≤ π

√
m

c
,

−F+, for π

√
m

c
< t ≤ 2π

√
m

c
,

F+, for 2π

√
m

c
< t ≤ 3π

√
m

c
.

Hint. In (11.65) take

h0(x (T )) = 0, h (x (t) , u (t) , t) = 1,

and apply Theorem 11.8.2.
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AC machines. All models analyzed here are presented in the uniform Lagrangian
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D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,
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with a detailed description and deriving of the corresponding Lagrange functions L =
T − V .

12.1 Cylindrical manipulator (2-PJ and 1-R)

Consider the cylindrical manipulator with two prismatic joints (PJs) and a rotating
joint (R) represented in Fig. 12.1.

Figure 12.1 Manipulator with two prismatic joints (PJ) and a rotating joint (R).

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := z, q4 := x.

Kinetic energy
The kinetic energy T of this system is given by the following expression:

T =
4
∑

i=1

Tmi
, (12.1)

where Tmi
can be calculated using the König formula (see Section 3.6 in Chapter 3)

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

.

Here Ii,0 is the inertia tensor with respect to a coordinate system with the origin at
point O, the vector vmi−c.i.−0 is the speed of the center of inertia with respect to the
coordinate system with the origin at point O, and the vector v0 is the speed of the
origin of the coordinate system. In our case we have

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)=
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Tm1,rot−0 = 1

2
ϕ̇2

1

(

m1r
2
1

2

)

= m1r
2
1

4
q̇2

1

and

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)=

Tm1,rot−0 = 1

2
ϕ̇2

1

(

m2r
2
2

2

)

= m2r
2
2

4
q̇2

1 .

Also the following relations hold:

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)= Tm3,0 + Tm3,rot−0 =

1

2
m3ż

2 + 1

2
ϕ̇2

1
m3l

2
3

12
= 1

2
m3q̇

2
3 + 1

2
q̇2

1
m3l

2
3

24

and

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

1

2
m4

[

(xϕ̇1)
2 + ẋ2 + ż2

]

+

1

2

⎛

⎝

ϕ̇2
0
ϕ̇1

⎞

⎠

�

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1

2
m4r

2
4 0 0

0 m4

(

r2
4

4
+ l2

4

12

)

0

0 0 m4

(

r2
4

4
+ l2

4

12

)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇2
0
ϕ̇1

⎞

⎠

= 1

2
m4

(

q2
4 q̇2

1 + q̇2
4 + q̇2

3 + 1

2
r2

4 q̇2
2 +

[

r2
4

4
+ l2

4

12

]

q̇2
1

)

.

Substituting all derived terms in (12.1) gives

T = 1

4

(

m1r
2
1 + m2r

2
2 + m3l

2
3

12
+ 1

2
m4

[

r2
4 + l2

4

3

])

q̇2
1+

1

4
m4r

2
4 q̇2

2 +
(

1

2
m3 + 1

2
m4

)

q̇2
3 + 1

2
m4

(

q2
4 q̇2

1 + q̇2
4

)

.

(12.2)

Potential energy
The potential energy V is calculated as

V =
4
∑

i=1

Vmi
,
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Vm1 = const, Vm2 = const,

Vm3 = m3gz = m3gq3, Vm4 = m4gz = m4gq3,

which finally gives

V = g (m3q3 + m4q3) + const. (12.3)

Non-potential generalized forces
The generalized forces are given by the following formulas:

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a torsion force,

Qnon-pot,2 = τ2 − ff ric−2ϕ̇2 = τ2 − ff ric−2q̇2,

τ2 is a torsion force,

Qnon-pot,3 = F3 − ff ric−3ż = F3 − ff ric−3q̇3,

F3 is a force of vertical movement,

Qnon-pot,4 = F4 − ff ric−4ẋ = F4 − ff ric−4q̇4,

F4 is a force of horizontal movement.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.4)

Lagrange equations
Based on the expressions for T (12.2) and V (12.3), we can derive Lagrange’s

equations for this system:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i (i = 1, ...,4) , L = T − V,

which can be represented in the format

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ, (12.5)

with

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

m1r
2
1

2
+ m2r

2
2

2
+

m3l
2
3

12
+ m4

(

q2
4 + r2

4

4
+ l2

4

12

) 0 0 0

0
1

2
m4r

2
4 0 0

0 0 m3 + m4 0

0 0 0 m4

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

2m4q4q̇4 + ff ric−1 0 0 0
0 ff ric−2 0 0
0 0 ff ric−3 0

m4q4q̇1 0 0 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥

,
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g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
0
0
0

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2

−2gm3 + F3
F4

∥
∥
∥
∥
∥
∥
∥
∥

.

12.2 Rectangular (Cartesian) robot manipulator

Consider the rectangular (Cartesian) manipulator with two prismatic joints and a ro-
tating joint, represented in Fig. 12.2.

Figure 12.2 Rectangular (Cartesian) robot manipulator.

Generalized coordinates
The generalized coordinates of this system are

q1 := ϕ, q2 := x, q3 := y, q4 := z.

Kinetic energy
The kinetic energy T of this system is T =∑4

i=1 Tmi
, where Tmi

can be calculated
using the König formula:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

.

Here Ii,0 is the inertia tensor with respect to a coordinate system with the origin at
point O, vmi−c.i.−0 is the speed of the center of inertia with respect to the system
of coordinates with the origin at point O, and v0 is the velocity of the origin of the
coordinate system.
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In our case we have

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)

= Tm1,0 = 1

2
m1ẋ

2 = 1

2
m1q̇

2
2 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)

= Tm2,0 = 1

2
m2ẋ

2 = 1

2
m2q̇

2
2 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)

= Tm3,0 = 1

2
m3

[

ẋ2 + ż2
]

= 1

2
m3

(

q̇2
2 + q̇2

4

)

,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

Tm4,0 + Tm4,rot−0 = 1

2
m4

[

ẋ2 + ẏ2 + ż2
]

+ 1

2
ϕ̇2
(

1

2
m4r

2
4

)

= 1

2
m4

(

q̇2
2 + q̇2

3 + q̇2
4

)

+ 1

4
m4r

2
4 q̇2

1 .

So finally,

T = 1

4
m4r

2
4 q̇2

1 + 1

2
(m1 + m2 + m3 + m4) q̇2

2 + 1

2
m4q̇

2
3 + 1

2
(m3 + m4) q̇2

4 .

(12.6)

Potential energy
The potential energy V is as follows:

V =
4
∑

i=1

Vmi
,

Vm1 = const, Vm2 = const,

Vm3 = m3gz = m3gq4, Vm4 = m4gz = m4gq4,

which gives

V = g (m3 + m4) q4 + const. (12.7)

Non-potential forces
The generalized forces are given by the following formulas:

Qnon-pot,1 = τ1 − ff ric−1ϕ̇ = τ1 − ff ric−1q̇1,

τ1 is a torsion force,

Qnon-pot,2 = F2 − ff ric−2ẋ = F2 − ff ric−2q̇2,

F2 is a force of horizontal movement,
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Qnon-pot,3 = F3 − ff ric−3ẏ = F3 − ff ric−3q̇3,

F3 is a force of transverse movement,

Qnon-pot,4 = F4 − ff ric−4ż = F4 − ff ric−4q̇4,

F4 is a force of vertical movement.

Lagrange equations
Based on the expressions for T (12.6) and V (12.7) we can derive Lagrange’s equa-

tions:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i (i = 1, ...,4) , L = T − V.

In the standard format (12.5)

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

with

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1

2
m4r

2
4 0 0 0

0

[

m1 + m2+
m3 + m4

]

0 0

0 0 m4 0

0 0 0 (m3 + m4)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

ff ric−1 0 0 0

0 ff ric−2 0 0

0 0 ff ric−3 0

0 0 0 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
0
0
0

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥

τ1

F2

F3

F4 − g (m3 + m4)

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

12.3 Scaffolding type robot manipulator

Consider the scaffolding robot manipulator represented in Fig. 12.3.

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := z, q4 := x.
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Figure 12.3 Scaffolding robot manipulator.

Kinetic energy
The kinetic energy T =∑4

i=1 Tmi
of this system is given by the following compo-

nents:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

.

In our case

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)

= Tm1,0 = 1

2
m1

(

ẋ2 + ẏ2
)

= 1

2
m1

(

q̇2
1 + q̇2

2

)

,

⎫

⎬

⎭

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)=

Tm2,0 + Tm2,rot−0 = 1

2
m2

(

ẋ2 + ẏ2
)

+ 1

2
m2 (r2 + r3)

1

2
ϕ̇2

1

= 1

2
m2

(

q̇2
1 + q̇2

2

)

+ 1

4
m2 (r2 + r3)

2 q̇2
3 ,

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)=

Tm3,0 + Tm3,rot−0 = 1

2
m3

(

ẋ2 + ẏ2
)

+ 1

2
m3r3

1

2
ϕ̇2

1

1

2
m3

(

q̇2
1 + q̇2

2

)

+ 1

4
m3r

2
3 q̇2

3 ,

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and
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Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 1

2
m4

(

ẋ2 + ẏ2
)

+

1

2

⎛

⎝

ϕ̇1
0
ϕ̇2

⎞

⎠

�

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

m4

(

r2
4

4
+ l2

4

3

)

0 0

0 m4

(

r2
4

4
+ l2

4

3

)

0

0 0 m4
r2

4

2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇1
0
ϕ̇2

⎞

⎠

+ m4
(

ẋ ẏ 0
)

⎛

⎜
⎜
⎜
⎝

ϕ̇1
l4

2
sinϕ

ϕ̇1
l4

2
cosϕ

0

⎞

⎟
⎟
⎟
⎠

= 1

2
m4

[
(

q̇2
1 + q̇2

2

)

+
(

r2
4

4
+ l2

4

3

)

q̇2
3+

r2
4

2
q̇2

4 + l4 (q̇1 sinq3 + q̇2 cosq3) q̇3

]

.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Potential energy
The potential energy V =∑4

i=1 Vmi
with Vmi

= const gives V = const.

Non-potential forces
The generalized non-potential forces are as follows:

Qnon-pot,1 = F1 − ff ric−1ẋ = F1 − ff ric−1q̇1,

F1 is a force of horizontal movement,

Qnon-pot,2 = F2 − ff ric−2ẏ = F2 − ff ric−2q̇2,

F2 is a force of transverse movement,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇1 = τ3 − ff ric−3q̇3,

τ3 is a torsion force,

Qnon-pot,4 = τ4 − ff ric−4ϕ̇2 = τ4 − ff ric−4q̇4,

τ4 is a torsion force.

Lagrange equations
The Lagrange equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i (i = 1,4) , L = T − V

may be represented in the format (12.5)

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,
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with

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(

m1 + m2
+m3 + m4

)

0
1

2
m4l4 sinq3 0

0

(

m1 + m2
+m3 + m4

)
1

2
m4l4 cosq3 0

m4l4

2
sinq3

m4l4

2
cosq3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m4

(

r2
4

4
+ l2

4

3

)

+
1

2
m2 (r2 + r3)

2

+1

2
m3r

2
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0

0 0 0 m4
r2

4

2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

ff ric−1 0
1

2
m4l4 (cosq3) q̇3 0

0 ff ric−2
1

2
m4l4 (sinq3) q̇3 0

0 0 ff ric−3 0

0 0 0 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

and

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
0
0
0

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥

F1

F2

τ3

τ4

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

12.4 Spherical (polar) robot manipulator

Consider the spherical (polar) manipulator with three rotating joints represented in
Fig. 12.4.

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3.

Kinetic energy
The kinetic energy T of this system is given by the following expression, T =

∑4
i=1 Tmi

, where Tmi
can be calculated based on the König formula:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,
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Figure 12.4 Spherical (polar) manipulator with three rotating joints.

Tmi,0 = 1

2
mi ‖v0‖2 .

Here vmi−c.i.−0 is the velocity of the center of inertia with respect to the coordinate
system with the origin in the point O, v0 is the velocity of the origin of the coordinate

systems, and Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

, where Ii,0 is the tensor of inertia with respect

to the coordinate system with the origin in the point O.
In our case we have

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)

= Tm1,rot−0 = 1

2
ϕ̇2

1

(

m1r
2
1

2

)

= m1r
2
1

4
q̇2

1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm1,rot−0

= m2ϕ̇
2
1

2V

[

v21

(

a2
1 + a2

2

)

12
+ v22

(

(a1 − a3)
2

2
+ a2

2

6

)

+v23

(

(a1 − a3)
2

2
+ r2

2

4

)]

,

v21 = a1a2h1, v22 = 2a2a3h2, v23 = a1a2h1,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)= Tm3,rot−0 =

1

2

⎛

⎜
⎝

ϕ̇1 sinϕ1

ϕ̇1 cosϕ1

ϕ̇2

⎞

⎟
⎠

ᵀ

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

m3b
2

12
0 0

0
m3l

2
3

12
0

0 0
m3
(

b2
m3 + l2

3

)

12

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ1

ϕ̇1 cosϕ1

ϕ̇2

⎞

⎟
⎠
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= 1

24
m3

[(

b2 sin2 q1 + l2
3 cos2 q1

)

q̇2
1 +

(

b2
m3 + l2

3

)

q̇2
2

]

,

and

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)

= Tm4,0 + Tm4,rot−0 = 1

2
m4

[

(l3 + l4)
2 ϕ̇2

1

4
+ (l3 + l4)

2 ϕ̇2
2

4

]

+

1

2

⎛

⎜
⎝

ϕ̇1 sinϕ1 + ϕ̇3

ϕ̇1 cosϕ1

ϕ̇2

⎞

⎟
⎠

�

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

m4r
2
4

2
0 0

0 m4

(

r2
4

4
+ l2

4

12

)

0

0 0 m4

(

r2
4

4
+ l2

4

12

)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

×
⎛

⎜
⎝

ϕ̇1 sinϕ1 + ϕ̇3

ϕ̇1 cosϕ1

ϕ̇2

⎞

⎟
⎠

= 1

8
m4

[

(l3 + l4)
2
(

q̇2
1 + q̇2

2

)

+
(

r2
4 + l2

4

3

)
(

q̇2
1 cos2 q1 + q̇2

2

)

+2r2
4

(

q̇2
1 sin2 q1 + q̇2

3 + 2q̇3q̇1 sinq1

)]

.

Potential energy
The potential energy V = ∑4

i=1 Vmi
contains Vm1 = const, Vm2 = const, Vm3 =

const, and

Vm4 = m4g (h1 + h2 + r sinϕ2) = m4g (h1 + h2 + r sinq2) ,

which leads to

V = m4g (h1 + h2 + r sinq2) + const.

Non-potential forces
The generalized non-potential forces are

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a torsion force,

Qnon-pot,2 = τ2 − ff ric−2ϕ̇2 = τ2 − ff ric−2q̇2,

τ2 is a torsion force,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇3 = τ3 − ff ric−3q̇3,

τ3 is a torsion force.
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Lagrange equations
Based on the expressions for T and V , we can derive Lagrange’s equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3, L = T − V

for the considered system in the format (12.5)

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥

d11 0 d13

0 d22 0

d31 0 d33

∥
∥
∥
∥
∥
∥
∥

,

with

V = v21 + v22 + v23,

d11 = m2

V

[

v21
a2

1 + a2
2

12
+

v22

(

(a1 − a3)
2

2
+ a2

2

6

)

+ v23

(

(a1 − a3)
2

2
+ r2

2

4

)]

+1

2
m1r

2
1 + m3

(

b2

12
sin2 q1 + l2

3

12
cos2 q1

)

+

m4

((

r2
4

4
+ l2

4

12

)

cos2 q1 + 1

2
r2

4 sin2 q1 + (l3 + l4)
2

4

)

,

v21 = a1a2h1, v22 = 2a2a3h2, v23 = a1a2h1,

d22 =
[

m3

(

b2
m3 + l2

)

12
+ m4

(

r2
4

4
+ l2

4

12
+ (l3 + l4)

2

4

)]

,

d33 = 1

2
m4r

2
4 , d13 = d31 = 1

2
m4r

2
4 sin (q1) ,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

ff ric−1 0 0

0 ff ric−2 0
1

2
m4r

2
4 cos (q1) 0 ff ric−3

∥
∥
∥
∥
∥
∥
∥
∥

,

g (q) =
∥
∥
∥
∥
∥
∥

0
m4gr cosq2

0

∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥

τ1

τ2

τ3

∥
∥
∥
∥
∥
∥
∥

.
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12.5 Articulated robot manipulator 1

Consider now the articulated robot manipulator represented in Fig. 12.5.

Figure 12.5 Articulated robot manipulator.

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3.

Kinetic energy
The kinetic energy T =∑3

i=1 Tmi
of this system consists of three components Tmi

,
which are calculated as

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

,

where Ii,0 is the inertia tensor with respect to the coordinate system with the origin in
the point O, vmi−c.i.−0 is the velocity of the inertia tensor with respect to the coordi-
nate system with the origin in the point O, and v0 is the velocity of the origin of the
coordinate system. In our case we have

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)

= Tm1,rot−0 = 1

2
ϕ̇2

1

(

m1r
2
1

2

)

= m1r
2
1

4
q̇2

1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,rot−0 =
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1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

�
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I2xx 0 0

0
1

4
m2l

2
2 + I2yy 0

0 0
1

4
m2l

2
2 + I2zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

= 1

2

[

I2xx q̇
2
1 sin2 q2 +

(

m2l
2
2

4
+ I2yy

)

q̇2
1 cos2 q2 +

(

m2l
2
2

4
+ I2zz

)

q̇2
2

]

,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)= 1

2
m3

(

ϕ̇2
2 l2

2 + ϕ̇2
1 l2

2 cos2 ϕ2

)

+

1

2

⎛

⎜
⎝

ϕ̇1 sin (ϕ3 − ϕ2)

ϕ̇1 cos (ϕ3 − ϕ2)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I3xx 0 0

0 m3d
2
3 + I3yy 0

0 0 md2
3 + I3zz

∥
∥
∥
∥
∥
∥
∥

×

⎛

⎜
⎝

ϕ̇1 sin (ϕ3 − ϕ2)

ϕ̇1 cos (ϕ3 − ϕ2)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠+ m3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[− (ϕ̇2 + ϕ̇3) d3 cosϕ1 sin (ϕ3 − ϕ2)+)

ϕ̇1d3 sinϕ1 cos (ϕ3 − ϕ2)−
(ϕ̇2 + ϕ̇3) d3 cos (ϕ3 − ϕ2)]

[ϕ̇1d3 cosϕ1 cos (ϕ3 − ϕ2)+
(ϕ̇2 + ϕ̇3) d3 sinϕ1 sin (ϕ3 − ϕ2)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

×

⎛

⎜
⎝

−ϕ̇2l2 cosϕ1 sinϕ2 − ϕ̇1l2 sinϕ1 cosϕ2

ϕ̇2l2 cosϕ2

−ϕ̇1l2 cosϕ1 cosϕ2 + ϕ̇2l2 sinϕ1 sinϕ2

⎞

⎟
⎠=

= 1

2
m3l

2
2

(

q̇2
1 cos2 q2 + q̇2

2

)

+ 1

2
I3xx q̇

2
1 sin2 (q3 − q2)+

1

2

(

m3d
2
3 + I3yy

)

q̇2
1 cos2 (q3 − q2) + 1

2

(

m3d
2
3 + I3zz

)(

q̇2
2 + q̇2

3 + 2q̇2q̇3

)

−m3 [(q̇2 + q̇3) q̇2l2d3 cosq3] − m3

[

q̇2
1 l2d3 cosq2 cos (q3 − q2)

]

.

Here d3 is the distance of the union of links 2 and 3 to the center of inertia of link 3.

Potential energy
The potential energy V =∑3

i=1 Vmi
has components

Vm1 = const, Vm2 = m2g

(
l2

2
sinϕ2

)

= m2g
l2

2
sinq2,

Vm3 = m3g (d3 sin (ϕ3 − ϕ2) + l2 sinϕ2)

= m3g (d3 sin (q3 − q2) + l2 sinq2) ,

which gives

V = 1

2
m2gl2 sinq2 + m3g (d3 sinq3 + l2 sinq2) .
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Non-potential forces
The non-potential forces are given by

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

where τi (i = 1,2,3) are torsion forces.

Lagrange equations
Based on the obtained expressions for T , V , and L = T − V we can derive La-

grange’s equations for the considered system:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3,

which leads to the following dynamic model in the format (12.5):

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥

D11 (q) 0 0

0 D22 (q) D23 (q)

0 D32 (q) D33 (q)

∥
∥
∥
∥
∥
∥
∥

,

with

D11 (q) =
[

1

2
m1r

2
1 + I2xx sin2 q2 +

(

m2l
2
2

4
+ I2yy + m3l

2
2

)

cos2 q2

]

+
[

I3xx sin2 (q3 − q2) +
(

m3d
2
3 + I3yy

)

cos2 (q3 − q2)
]

−2m3 [l2d3 cosq2 cos (q3 − q2)] ,

D22 (q) = m2l
2
2

4
+ I2zz + m3 (l2 + r2)

2 + m3d
2
3 + I3zz

−2m3 [(l2 + r2) d3 cosq3] ,

D23 (q) = D32 (q) =
[

m3d
2
3 + I3zz

]

− m3 [(l2 + r2) d3 cosq3] ,

D33 (q) = m3d
2
3 + I3zz,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) 0 0

C21 (q, q̇) C22 (q, q̇) C23 (q, q̇)

C31 (q, q̇) C32 (q, q̇) C33 (q, q̇)

∥
∥
∥
∥
∥
∥
∥

,

where
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C11 (q, q̇) = ff ric−1 + 2

[(

I2xx − m2l
2
2

4
− I2yy − m3l

2
2

)

sinq2 cosq2

]

q̇2

+2
[(

I3xx − m3d
2
3 − I3yy

)

sinq3 cosq3

]

(q̇3 − q̇2)+
2m3 [l2d3 cosq2 sin (q3 − q2)] q̇3,

C21 (q, q̇) = −
[(

I2xx − m2l
2
2

4
− I2yy − m3l

2
2

)

sinq2 cosq2

]

q̇1−
[(

m3d
2
3 + I3yy − I3xx

)

sin (q3 − q2) cos (q3 − q2) − m3l2d3 sinq3

]

q̇1,

C22 (q, q̇) = ff ric−2 + 2m3 [l2d3 sinq3] q̇3,

C31 (q, q̇) = −
[(

I3xx − m3d
2
3 − I3yy

)

sinq3 cosq3

]

q̇1−
m3l2d3 cosq2 sin (q3 − q2) q̇1,

C23 (q, q̇) = m3 [l2d3 sinq3] q̇3,

C32 (q, q̇) = 2m3 [l2d3 sinq3] q̇2 − m3l2d3 sinq3q̇2,

C33 (q, q̇) = ff ric−3 + m3 [l2d3 sinq3] q̇3 − m3l2d3 sinq3q̇2,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

0
(

1

2
m2 + m3

)

gl2 cosq2 − m3g [d3 cos (q3 − q2)]

m3gd3 cosq3

∥
∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥

τ1

τ2

τ3

∥
∥
∥
∥
∥
∥
∥

.

12.6 Universal programmable manipulator

Consider the universal programmable manipulator (PUMA) for assembly shown in
Fig. 12.6.

Figure 12.6 Universal programmable manipulator (PUMA).
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Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3.

Kinetic energy
The components of the kinetic energy T =∑5

i=1 Tmi
of this system are calculated

as

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

,

which in our case gives

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,rot−0 = 1

2
ϕ̇2

1

(

m1r
2
1

2

)

= m1r
2
1

4
q̇2

1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)=

Tm2,rot−0 = 1

2
ϕ̇2

1

(

m2r
2
2

2

)

= m2r
2
2

4
q̇2

1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)= Tm3,rot−0 =

1

2

⎛

⎝

ϕ̇2
0
ϕ̇1

⎞

⎠

�

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1

2
m3r

2
3 0 0

0
1

4
m3

(

r2
3 + l2

3

3

)

0

0 0
1

4
m3

(

r2
3 + l2

3

3

)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇2
0
ϕ̇1

⎞

⎠

= 1

2
m3

[

1

4

(

r2
3 + l2

3

3

)

q̇2
1 + 1

2
r2

3 q̇2
2

]

,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 1

2
m4

l2
3 ϕ̇2

1

4
+

1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

� ∥∥
∥
∥
∥
∥
∥

I4xx 0 0

0 m4d
2
4 + I4yy 0

0 0 m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−1

2
ϕ̇1l3 cosϕ1

0
1

2
ϕ̇1l3 sinϕ1

⎞

⎟
⎟
⎟
⎠

�
⎛

⎜
⎝

−ϕ̇2d4 cosϕ1 sinϕ2 − ϕ̇1d4 sinϕ1 cosϕ2

ϕ̇2d4 cosϕ2

−ϕ̇1d4 cosϕ1 cosϕ2 + ϕ̇2d4 sinϕ1 sinϕ2

⎞

⎟
⎠=
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1

2

[

m4
l2
3 q̇2

1

4
+ I4xx q̇

2
1 sin2 q2 +

(

m4d
2
4 + I4yy

)

q̇2
1 cos2 q2+

(

m4d
2
4 + I4zz

)

q̇2
2

]

+ 1

2
m4l3d4q̇1q̇2 cosq2,

and

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)=

1

2
m5

[(

l2
3

4
+ b2

5

(

cos2 ϕ2

)
)

ϕ̇2
1 + b2

5ϕ̇
2
2 + ϕ̇1ϕ̇2l3b5 sinϕ2

]

1

2

⎛

⎜
⎝

ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I5xx 0 0

0 m5d
2
5 + I5yy 0

0 0 m5d
2
5 + I5zz

∥
∥
∥
∥
∥
∥
∥

·

·
⎛

⎜
⎝

ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠+

m5

⎛

⎜
⎝

ϕ̇1d5 sinϕ1 cos (ϕ2 + ϕ3) + (ϕ̇2 + ϕ̇3) d5 cosϕ1 sin (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) d5 cos (ϕ2 + ϕ3)

ϕ̇1d5 cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3) d5 sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎝

−1

2
ϕ̇1l3 cosϕ1 − ϕ̇2b5 cosϕ1 sinϕ2 − ϕ̇1b5 sinϕ1 cosϕ2

ϕ̇2b5 cosϕ2

1

2
ϕ̇1l3 sinϕ1 − ϕ̇1b5 cosϕ1 cosϕ2 + ϕ̇2b5 sinϕ1 sinϕ2

⎞

⎟
⎟
⎟
⎟
⎠

= 1

2
m5

[(

l2
3

4
+ b2

5

(

cos2 q2

)
)

q̇2
1 + b2

5q̇
2
2 + q̇1q̇2l3b5 sinq2

]

+1

2

[[

I5xx sin2 (q2 + q3) +
(

m5d
2
5 + I5yy

)

cos2 (q2 + q3)
]

q̇2
1+

(

m5d
2
5 + I5zz

)

(q̇2 + q̇3)
2
]

−
m5

2
q̇1 (q̇2 + q̇3) d5l3 sin (q2 + q3) − m5q̇

2
1d5b5 cosq2 cos (q2 + q3)

−m5 (q̇2 + q̇3) q̇2d5b5 cosq3,

where b5 is the distance from the union of m3 and m4 to the union of m4 and m5.

Potential energy
The potential energy V =∑5

i=1 Vmi
has components

Vm1 = const, Vm2 = constt, Vm3 = const,
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Vm4 = m4g (d4 sinϕ2 + d4) = m4gd4 (sinq2 + const) ,

Vm5 = m5g [−d5 sin (ϕ2 + ϕ3) + l4 sinϕ2 + const]

= m5g [−d5 sin (q2 + q3) + l4 sinq2 + const] ,

so that

V = m4gd4 sinq2 + m5g [−d5 sin (q2 + q3) + l4 sinq2] + const.

Non-potential forces
The non-potential generalized forces are

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

τi is a torsion force (i = 1,2,3) .

Lagrange equations
Based on the expressions for T , V , and L = T − V we can derive the Lagrange

equations for the system:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3,

which can be represented in the standard format (12.5)

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥

D11 (q) D12 (q) D13 (q)

D21 (q) D22 (q) D23 (q)

D31 (q) D32 (q) m5d
2
5 + I5zz

∥
∥
∥
∥
∥
∥
∥

,

with

D11 (q) = 1

2

[

m1r
2
1 + m2r

2
2 + m3

2

(

r2
3 + l2

3

3

)

+ m4l
2
3

2

]

+

I4xx sin2 q2 +
(

m4d
2
4 + I4yy

)

cos2 q2 + m5

(

l2
3

4
+ b2

5

(

cos2 q2

)
)

+

I5xx sin2 (q2 + q3) +
(

m5d
2
5 + I5yy

)

cos2 (q2 + q3)

−2m5d5b5 cosq2 cos (q2 + q3) ,

D12 (q) = D21 (q) = 1

2
[m4l3d4 cosϕ2 + m5l3b5 sinq2]

−1

2
m5d5l3 sin (q2 + q3) ,
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D22 (q) = 1

2
m3r

2
3 + m4d

2
4 + I4zz + m5b

2
5 + m5d

2
5 + I5zz − m5d5b5 cosq3,

D13 (q) = D31 (q) = −1

2
m5d5l3 sin (q2 + q3) ,

D23 (q) = D32 (q) = m5

(

d2
5 − d5b5 cosq3 + I5zz

)

,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) C12 (q, q̇) C31 (q, q̇)

C21 (q, q̇) C22 (q, q̇) m5d5b5 sinq3q̇3

C31 (q, q̇) C32 (q, q̇) ff ric−3

∥
∥
∥
∥
∥
∥
∥

,

with

C11 (q, q̇) = ff ric−1 + 2
[

I4xx sinq2 cosq2 + m5b
2
5 sinq2 cosq2

]

q̇2−
2
(

m4d
2
4 + I4yy

)

sinq2 cosq2q̇2+
2 [I5xx sin (q2 + q3) cos (q2 + q3)] (q̇2 + q̇3)−
2
(

m5d
2
5 + I5yy

)

sin (q2 + q3) cos (q2 + q3) (q̇2 + q̇3)+
2m5d5b5 [sin (2q2 + q3) q̇2 + cosq2 sin (q2 + q3) q̇3] ,

C21 (q, q̇) = 1

2
[m5l3b5 cosq2 − m4l3d4 sinq2] q̇2

−
[

I4xx sinq2 cosq2 +
(

m4d
2
4 + I4yy

)

cosq2

]

q̇1−
[(

1

2
I5xx − m5d

2
5 − I5yy

)

sin (q2 + q3) cos (q2 + q3)

]

q̇1

−
[

m5b
2
5 sinq2 cosq2

]

q̇1 − [m5d5b5 sin (2q2 + q3)] q̇1,

C12 (q, q̇) = 1

2
[m5l3b5 cosq2 − m4l3d4 sinq2] q̇2

−1

2
m5d5l3 cos (q2 + q3) (q̇2 + q̇3) ,

C22 (q, q̇) = ff ric−2 + [m5d5b5 sinq3] q̇3−
1

2
[m5l3b5 cosq2 − m4d4l3 sinq2] q̇1,

C31 (q, q̇) = − [I5xx sin (q2 + q3) cos (q2 + q3)] q̇1+
[(

m5d
2
5 + I5yy

)

sin (q2 + q3) cos (q2 + q3)
]

q̇1−
m5d5b5 cosq2 sin (q2 + q3) q̇1,

C32 (q, q̇) = m5d5b5 sinq3q̇3 + m5d5b5 cosq3 (q̇2 + q̇3) ,

C33 (q, q̇) = −1

2
m5d5l3 cos (q2 + q3) (q̇2 + q̇3) ,
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g (q) =

∥
∥
∥
∥
∥
∥
∥

0

m4gd4 cosq2 + m5g (d4 cosq2 − d5 cos (q2 + q3))

−m5gd5 cosq3

∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥

τ1

τ2

τ3

∥
∥
∥
∥
∥
∥
∥

.

12.7 Cincinnati Milacron T3 manipulator

Consider the manipulator “Cincinnati Milacron T3” represented in Fig. 12.7.

Figure 12.7 Manipulator “Cincinnati Milacron T3”.

Generalized coordinates
The following variables are selected as the generalized coordinates for this system:

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4, q5 := ϕ5.

Kinetic energy
The components of the kinetic energy T =∑5

i=1 Tmi
of this system may be calcu-

lated by the König formula

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

,

which in our case leads to

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)

= Tm1,rot−0 = 1

2
ϕ̇2

1

(

m1r
2
1

2

)

= m1r
2
1

4
q̇2

1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,rot−0 =
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1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I2xx 0 0

0 m2d
2
2 + I2yy 0

0 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

= 1

2

[

I2xx q̇
2
1 sin2 q2 +

(

m2d
2
2 + I2yy

)

q̇2
1 cos2 q2 +

(

m2d
2
2 + I2zz

)

q̇2
2

]

,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)=

1

2
m3

[

l2
2

(

cos2 ϕ2

)

ϕ̇2
1 + l2

2 ϕ̇2
2

]

+

1

2
ω�

3

∥
∥
∥
∥
∥
∥
∥

I3xx 0 0

0 m3d
2
3 + I3yy 0

0 0 m3d
2
3 + I3zz

∥
∥
∥
∥
∥
∥
∥

ω3 + m3a�
3 b3 =

1

2
m3

[

l2
2 cos2 q2q̇

2
1 + l2

2 q̇2
2

]

+
1

2

[

I3xx sin2 (q2 + q3) +
(

m3d
2
3 + I3yy

)

cos2 (q2 + q3)
]

q̇2
1+

1

2

(

m3d
2
3 + I3zz

)

(q̇2 + q̇3)
2 −

m3

[

d3l2 cosq2 cos (q2 + q3) q̇2
1 + d3l2 cosq3 (q̇2 + q̇3) q̇2

]

,

where

ω3 =
⎛

⎜
⎝

ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠ ,

a3 =
⎛

⎜
⎝

ϕ̇1d3 sinϕ1 cos (ϕ2 + ϕ3) + (ϕ̇2 + ϕ̇3) d3 cosϕ1 sin (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) d3 cos (ϕ2 + ϕ3)

ϕ̇1d3 cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3) d3 sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎟
⎠ ,

b3 =
⎛

⎜
⎝

−ϕ̇2l2 cosϕ1 sinϕ2 − ϕ̇1l2 sinϕ1 cosϕ2

ϕ̇2l2 cosϕ2

−ϕ̇1l2 cosϕ1 cosϕ2 + ϕ̇2l2 sinϕ1 sinϕ2

⎞

⎟
⎠ ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)

= 1

2
m4

[

l2
2

(

cos2 ϕ2

)

ϕ̇2
1 + l2

2 ϕ̇2
2

]

+

1

2
ω�

4

∥
∥
∥
∥
∥
∥
∥

I4xx 0 0

0
[

m4 (l3 + d4)
2 + I4yy

]

0

0 0
[

m4 (l3 + d4)
2 + I4zz

]

∥
∥
∥
∥
∥
∥
∥

ω4 + m4a�
4 b4

= 1

2
m4l

2
2 q̇2

2 + 1

2

[

I4xx sin2 (q2 + q3)+
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(

m4 (l3 + d4)
2 + I4yy

)

cos2 (q2 + q3)
]

q̇2
1+

m4

[
1

2
l2
2 cos2 q2 − (l3 + d4) l2 cosq2 cos (q2 + q3)

]

q̇2
1+

1

2
I4xx

[

2 sin (q2 + q3) q̇1q̇4 + q̇2
4

]

+
1

2

[(

m4 (l3 + d4)
2 + I4zz

)]

(q̇2 + q̇3)
2 −

[m4 (l3 + d4) l2 cosq3] (q̇2 + q̇3) q̇2,

where

ω4 =
⎛

⎜
⎝

ϕ̇1 sin (ϕ2 + ϕ3) + ϕ̇4

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠ ,

a4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

ϕ̇1 (l3 + d4) sinϕ1 cos (ϕ2 + ϕ3)

+ (ϕ̇2 + ϕ̇3) (l3 + d4) cosϕ1 sin (ϕ2 + ϕ3)

]

[− (ϕ̇2 + ϕ̇3) (l3 + d4) cos (ϕ2 + ϕ3)]
[

ϕ̇1 (l3 + d4) cosϕ1 cos (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) (l3 + d4) sinϕ1 sin (ϕ2 + ϕ3)

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

b4 =
⎛

⎜
⎝

−ϕ̇2l2 cosϕ1 sinϕ2 − ϕ̇1l2 sinϕ1 cosϕ2

ϕ̇2l2 cosϕ2

−ϕ̇1l2 cosϕ1 cosϕ2 + ϕ̇2l2 sinϕ1 sinϕ2

⎞

⎟
⎠ ,

and

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)=

1

2
m5

[

ϕ̇2
1 [(l3 + l4) cos (ϕ2 + ϕ3) − l2 cosϕ2]2 +

ϕ̇2
2 l2

2 +
(

ϕ̇2
2 + ϕ̇2

3 + 2ϕ̇2ϕ̇3

)

(l3 + l4)
2 sin2 (ϕ2 + ϕ3)

]

−
1

2
m5 [2ϕ̇2 (ϕ̇2 + ϕ̇3) l2 (l3 + l4) sinϕ2 sin (ϕ2 + ϕ3)]+

1

2
ω�

5

∥
∥
∥
∥
∥
∥
∥

I5xx 0 0

0 m5d
2
5 + I5yy 0

0 0 m5d
2
5 + I5zz

∥
∥
∥
∥
∥
∥
∥

ω5 + m5a�
5 b5 =

1

2
m5

[

[(l3 + l4) cos (q2 + q3) − l2 cosq2]2 q̇2
1

]

+ 1

2
m5l

2
2 q̇2

2+
1

2

[

I5xx sin2 (q2 + q3 + q5) +
(

m5d
2
5 + I5yy

)

cos2 (q2 + q3 + q5)
]

q̇2
1−

m5 [d5 cos (q2 + q3 + q5)] [(l3 + l4) cos (q2 + q3) − l2 cosq2] q̇2
1+
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1

2
m5

[

(l3 + l4)
2 sin2 (q2 + q3)

]

(q̇2 + q̇3)
2 −

m5 [l2 (l3 + l4) sinq2 sin (q2 + q3)] (q̇2 + q̇3) q̇2+
[

m5d
2
5 + I5zz

]

2
(q̇2 + q̇3 + q̇5)

2 + m5 [d5l2 cos (q3 + q5)] (q̇2 + q̇3 + q̇5) q̇2−
m5 [d5 (l3 + l4) cos (q5)] (q̇2 + q̇3 + q̇5) (q̇2 + q̇3) ,

with

ω5 =
⎛

⎜
⎝

ϕ̇1 sin (ϕ2 + ϕ3 + ϕ5)

ϕ̇1 cos (ϕ2 + ϕ3 + ϕ5)

ϕ̇2 + ϕ̇3 + ϕ̇5

⎞

⎟
⎠ ,

a5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ϕ̇1d5 sinϕ1 cos (ϕ2 + ϕ3 + ϕ5)−
(ϕ̇2 + ϕ̇3 + ϕ̇5) d5 cosϕ1 sin (ϕ2 + ϕ3 + ϕ5)

(ϕ̇2 + ϕ̇3 + ϕ̇5) d5 cos (ϕ2 + ϕ3 + ϕ5)

−ϕ̇1d5 cosϕ1 cos (ϕ2 + ϕ3 + ϕ5)+
(ϕ̇2 + ϕ̇3 + ϕ̇5) d5 sinϕ1 sin (ϕ2 + ϕ3 + ϕ5)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

b5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ϕ̇2l2 cosϕ1 sinϕ2 + (ϕ̇2 + ϕ̇3) (l3 + l4) cosϕ1 sin (ϕ2 + ϕ3)+
ϕ̇1 sinϕ1 ((l3 + l4) cos (ϕ2 + ϕ3) − l2 cosϕ2)

ϕ̇2l2 cosϕ2 − (ϕ̇2 + ϕ̇3) (l3 + l4) cos (ϕ2 + ϕ3)

ϕ̇2l2 sinϕ1 sinϕ2 − (ϕ̇2 + ϕ̇3) (l3 + l4) sinϕ1 sin (ϕ2 + ϕ3)+
ϕ̇1 cosϕ1 ((l3 + l4) cos (ϕ2 + ϕ3) − l2 cosϕ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Potential energy
The potential energy V =∑5

i=1 Vmi
consists of

Vm1 = const,

Vm2 = m2g (d2 sinϕ2 + const) = m2gd2 (sinq2 + const) ,

Vm3 = m3g (−d3 sin (ϕ2 + ϕ3) + l2 sinϕ2 + const) =
m3g (−d3 sin (q2 + q3) + sinq2 + const) ,

Vm4 = m4g (− (l3 + d4) sin (ϕ2 + ϕ3) + l2 sinϕ2 + const)

= m4g (− (l3 + d4) sin (q2 + q3) + l2 sinq2 + const) ,

Vm5 = m5g [− (l3 + l4) sin (ϕ2 + ϕ3)+
l2 sinϕ2 + d5 sin (ϕ2 + ϕ3 + ϕ5) + const] =
m5g [− (l3 + l4) sin (q2 + q3) + l2 sinq2+
d5 sin (q2 + q3 + q5) + const] ,

which gives

V = m2gd2 sinq2 + m3g (−d3 sin (q2 + q3) + l2 sinq2)+
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m4g (− (l3 + d4) sin (q2 + q3) + l2 sinq2)+
m5g [− (l3 + l4) sin (q2 + q3)+
l2 sinq2 + d5 sin (q2 + q3 + q5)] + const.

Non-potential forces
The non-potential generalized forces are as follows:

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

τi is a torsion force (i = 1, ...,5) .

Lagrange equations
The dynamic equations of the considered manipulator are represented by the cor-

responding system of Lagrange equations:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,5,

L = T − V,

which leads to the following standard matrix format (12.5) of the dynamic model:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) 0 0 D14 (q) 0

0 D22 (q) D23 (q) 0 D25 (q)

0 D32 (q) D33 (q) 0 D35 (q)

D41 (q) 0 0 I4xx 0

0 D52 (q) D53 (q) 0 m5d
2
5 + I5zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

with

D11 (q) = 1

2
m1r

2
1 + I2xx sin2 q2 +

(

m2d
2
2 + I2yy

)

cos2 q2+
m3l

2
2 cos2 q2 + I3xx sin2 (q2 + q3) +

(

m3d
2
3 + I3yy

)

cos2 (q2 + q3)−
2m3d3l2 cosq2 cos (q2 + q3) + I4xx sin2 (q2 + q3) + m4 (l3 + d4)

2 +
I4yy cos2 (q2 + q3) + m4l

2
2 cos2 q2 − 2m4 [(l3 + d4) l2 cosq2 cos (q2 + q3)]+

m5 [(l3 + l4) cos (q2 + q3) − l2 cosq2]2 −
2m5d5 (l3 + l4) cos (q2 + q3) cos (q2 + q3 + q5)+
2m5 [d5l2 cosq2 cos (q2 + q3 + q5)] + I5xx sin2 (q2 + q3 + q5)+
(

m5d
2
5 + I5yy

)

cos2 (q2 + q3 + q5) ,
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D41 (q) = I4xx sin (q2 + q3) ,

D22 (q) = m2d
2
2 + I4zz + [m3 + m4 + m5] l2

2 + m3d
2
3 + I3zz

+m4 (l3 + d4)
2 + I4zz + m5 (l3 + l4)

2 sin2 (q2 + q3)−
2l2 [m3d3 cosq3 + m4 (l3 + d4) cosq3]−
2m5l2 (l3 + l4) sinq2 sin (q2 + q3) + m5d

2
5 + I5zz

+2m5d5l2 cos (q3 + q5) − 2m5d5 (l3 + l4) cos (q5) ,

D32 (q) = m3d
2
3 + I3zz + m4 (l3 + d4)

2 + I4zz+
m5 (l3 + l4)

2 sin2 (q2 + q3)−
l2 [m3d3 cosq3 + m4 (l3 + d4) cosq3]−
m5l2 (l3 + l4) sinq2 sin (q2 + q3) − 2m5d5 (l3 + l4) cos (q5)+
[

m5d
2
5 + I5zz

]

+ m5 [d5l2 cos (q3 + q5)] ,

D52 (q) = m5d
2
5 + I5zz + m5d5l2 cos (q3 + q5) − m5d5 (l3 + l4) cos (q5) ,

D23 (q) = m3d
2
3 + I3zz + m4 (l3 + d4)

2 + I4zz+
m5 (l3 + l4)

2 sin2 (q2 + q3) − m3d3l2 cosq3−
m4 (l3 + d4) l2 cosq3 − m5l2 (l3 + l4) sinq2 sin (q2 + q3)+
m5l2d5 cos (q3 + q5) + m5d

2
5 + I5zz − 2m5d5 (l3 + l4) cosq5,

D33 (q) = m3d
2
3 + I3zz + m4 (l3 + d4)

2 + I4zz +
[

m5d
2
5 + I5zz

]

+
m5 (l3 + l4)

2 sin2 (q2 + q3) − 2m5 [d5 (l3 + l4) cosq5] ,

D53 (q) = m5d
2
5 + I5zz − m5d5 (l3 + l4) cosq5,

D14 (q) = I4xx sin (q2 + q3) ,

D25 (q) = m5d
2
5 + I5zz + m5d5l2 cos (q3 + q5) − m5d5 (l3 + l4) cosq5,

D35 (q) = m5d
2
5 + I5zz − m5d5 (l3 + l4) cosq5,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) 0 0 C14 (q, q̇) 0

C21 (q, q̇) C22 (q, q̇) C23 (q, q̇) C24 (q, q̇) C25 (q, q̇)

C31 (q, q̇) C32 (q, q̇) C33 (q, q̇) C34 (q, q̇) C35 (q, q̇)

C41 (q, q̇) 0 0 ff ric−4 0

C51 (q, q̇) C52 (q, q̇) C53 (q, q̇) 0 C55 (q, q̇)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

containing

C11 (q, q̇) = ff ric−1 + 2
[(

I2xx − m2d
2
2 − I2yy − m3l

2
2

)

sinq2 cosq2

]

q̇2+
2
[(

I3xx − m3d
2
3 − I3yy

)

sin (q2 + q3) cos (q2 + q3)
]

(q̇2 + q̇3)+
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2
[

−m4 (l3 + d4)
2 sin (q2 + q3) cos (q2 + q3)

]

(q̇2 + q̇3)+
2
[(

I4xx − I4yy

)

sin (q2 + q3) cos (q2 + q3)
]

(q̇2 + q̇3)+
2m3d3l2 cosq2 sin (q2 + q3) q̇3 + [2m3d3l2 sin (2q2 + q3)] q̇2+
2m4

[

(l3 + d4) l2 sin (2q2 + q3) − l2
2 sinq2 cosq2

]

q̇2+
2m5 [(l3 + l4) cos (q2 + q3) − l2 cosq2]×
[− (l3 + l4) sin (q2 + q3)] (q̇2 + q̇3) + l2 sinq2q̇2

2m4 [(l3 + d4) l2 cosq2 sin (q2 + q3)] q̇3 +
[

2
(

I5xx − m5d
2
5 − I5yy

)]

×
sin (q2 + q3 + q5) cos (q2 + q3 + q5) (q̇2 + q̇3 + q̇5)+
2m5d5 sin (2q2 + 2q3 + q5) [l3 + l4 − l2] q̇2+
2m5d5 [(l3 + l4) sin (2q2 + 2q3 + q5)] q̇3−
2m5d5 [l2 sin (q2 + q3 + q5) cosq2] (q̇3 + q̇5)

+2m5d5 [(l3 + l4) sin (q2 + q3 + q5) cos (q2 + q3)] q̇5,

C21 (q, q̇) =
[(

−I2xx + m2d
2
2 + I2yy

)

sinq2 cosq2

]

q̇1
[(

m3l
2
2 + m4l

2
2

)

sinq2 cosq2

]

q̇1
[(

I3yy − I3xx + m3d
2
3 + m4 (l3 + d4)

2 + I4yy − I4xx

)]

×
[sin (q2 + q3) cos (q2 + q3)] q̇1−
[m4 (l3 + d4) l2 sin (2q2 + q3)] q̇1−
[

m3d3l2 sin (2q2 + q3) − m5l
2
2 cosq2 sinq2

]

q̇1−
m5 [(l3 + l4) l2 sin (2q2 + q3)] q̇1+
m5

[

(l3 + l4)
2 cos (q2 + q3) sin (q2 + q3)

]

q̇1−
[sin (q2 + q3 + q5) cos (q2 + q3 + q5)]×
[(

I5xx − m5d
2
5 − I5yy

)]

q̇1−
m5d5 [(l3 + l4) sin (2q2 + 2q3 + q5)] q̇1+
m5d5 [l2 sin (2q2 + q3 + q5)] q̇1,

C31 (q, q̇) = − sin (q2 + q3) cos (q2 + q3)
[

I3xx − m3d
2
3 − I3yy

]

q̇1−
[

I4xx − m4 (l3 + d4)
2 − I4yy

]

sin (q2 + q3) cos (q2 + q3) q̇1−
[m3d3l2 + m4 (l3 + d4) l2] cosq2 sin (q2 + q3) q̇1+
m5 [(l3 + l4) sin (q2 + q3)] [(l3 + l4) cos (q2 + q3) − l2 cosq2] q̇1−
[

I5xx − m5d
2
5 − I5yy

]

sin (q2 + q3 + q5) cos (q2 + q3 + q5) q̇1−
m5 [d5 sin (q2 + q3 + q5)] [(l3 + l4) cos (q2 + q3) − l2 cosq2] q̇1−



Collection of electromechanical models 411

m5 [d5 cos (q2 + q3 + q5)] (l3 + l4) sin (q2 + q3) q̇1,

C41 (q, q̇) = I4xx cos (q2 + q3) (q̇2 + q̇3) ,

C51 (q, q̇) = −
[(

I5xx − m5d
2
5 − I5yy

)]

×
[sin (q2 + q3 + q5) cos (q2 + q3 + q5)] q̇1−
m5 [d5 sin (q2 + q3 + q5)] × [(l3 + l4) cos (q2 + q3) − l2 cosq2] q̇1,

C22 (q, q̇) = ff ric−2 +
[

m5 (l3 + l4)
2
]

×
[sin (q2 + q3) cos (q2 + q3)] (q̇2 + 2q̇3) − m5l2 (l3 + l4) sin (2q2 + q3) (q̇2) ,

C23 (q, q̇) = − [m3d3l2 sinq3 + m4 (l3 + d4) l2 sinq3] (q̇2 + q̇3)+
[sin (q2 + q3) cos (q2 + q3)] ×

[

m5 (l3 + l4)
2
]

q̇2−
[m5l2 (l3 + l4) sin (2q2 + q3)] q̇2 + [m5d5l2 sin (q3 + q5)] q̇2+
m5 [l2 (l3 + l4) sinq2 cos (q2 + q3)] (q̇2 + q̇3) ,

C52 (q, q̇) = m5 [d5l2 sin (q3 + q5)] q̇2

−m5 [d5 (l3 + l4) sinq5] (q̇2 + q̇3 + q̇5) ,

C23 (q, q̇) = l2 [m3d3 sinq3 + (l3 + d4)m4 sinq3] (2q̇2 + q̇3)−
m5l2 (l3 + d4) sinq2 cos (q2 + q3) (2q̇2 + q̇3)−
m5 [d5l2 sin (q3 + q5)] (2q̇2 + q̇3 + q̇5)+
[

m5 (l3 + l4)
2 sin (q2 + q3) cos (q2 + q3)

]

q̇3,

C33 (q, q̇) = ff ric−3 + [sin (q2 + q3) cos (q2 + q3)]×
[

m5 (l3 + l4)
2
]

(q̇3 + 2q̇2) + [(m3d3l2 + m4 (l3 + d4) l2) sinq3] q̇2

− [m5l2 (l3 + l4) sinq2 cos (q2 + q3)] q̇2,

C53 (q, q̇) = −m5 [d5 (l3 + l4) sinq5] (q̇2 + q̇3 + q̇5) ,

C14 (q, q̇) = I4xx cos (q2 + q3) (q̇2 + q̇3) ,

C24 (q, q̇) = −I4xx cos (q2 + q3) q̇1,

C34 (q, q̇) = −I4xx cos (q2 + q3) q̇1,

C25 (q, q̇) = m5d5 (l3 + l4) sinq5 (2q̇2 + 2q̇3 + q̇5)−
m5 [d5l2 sin (q3 + q5)] (2q̇2 + q̇3 + q̇5) ,

C35 (q, q̇) = m5 [d5 (l3 + l4) sinq5] (2q̇2 + 2q̇3 + q̇5) ,

C55 (q, q̇) = ff ric−5 + m5 [d5 (l3 + l4) sinq5] (q̇2 + q̇3) ,
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and

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0
g2 (q)

g3 (q)

0
−m5gd5 cos (q2 + q3 + q5)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

τ1

τ2

τ3

τ4

τ5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

where

g2 (q) = −m2gd2 cosq2 + m3g (d3 cos (q2 + q3) − l2 cosq2)+
m4g ((l3 + d4) cos (q2 + q3) − l2 cosq2)+
m5g [(l3 + l4) cos (q2 + q3) − l2 cosq2]−
m5g [d5 cos (q2 + q3 + q5)] ,

g3 (q) = m3gd3 cos (q2 + q3) + m4g (l3 + d4) cos (q2 + q3)

+m5g [(l3 + l4) cos (q2 + q3) − d5 cos (q2 + q3 + q5)] .

12.8 CD motor, gear, and load train

Consider the following electromechanical system containing a CD motor, gear train,
and load, which is represented in Fig. 12.8.

Figure 12.8 CD motor, gear train, and load.



Collection of electromechanical models 413

Generalized coordinates
In this system the generalized coordinates are

q1 :=
∫ t

τ=0
i1 (τ ) dτ, q2 :=

∫ t

τ=0
i2 (τ ) dτ, q3 := ϕ.

Kinetic energy
The kinetic energy T is given here by the expression

T = Te +
4
∑

i=1

Tmi
,

where Tmi
can be calculated based on the König formula:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

.

In our case (see also Section 6.5) we have

Te = L1

2
i2
1 + L2

2
i2
2 − μi1i2 = 1

2
L1q̇

2
1 + 1

2
L2q̇

2
2 − μq̇1q̇2,

μ is a constant,

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)

= Tm1,rot−0 = 1

2

m1r
2
1

2
ϕ̇2 = 1

4
m1r

2
1 q̇2

3 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm1−c.i.−0,v0
)

= Tm2,rot−0 = 1

2

m2r
2
2

2
ϕ̇2 = 1

4
m2r

2
2 q̇2

3 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)

= Tm3,rot−0 = 1

2

m3r
2
3

2

r2
2 ϕ̇2

r2
3

= 1

4
m3r

2
2 q̇2

3 ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)

= Tm4,rot−0 = 1

2

m4r
2
4

2

r2
2 ϕ̇2

r2
3

= 1

4
m4

r2
4 r2

2

r2
3

q̇2
3 .

Potential energy
Here the potential energy V is

V = Ve +
4
∑

i=1

Vmi
, Ve = 0,
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Vm1 = const, Vm2 = const, Vm3 = const, Vm4 = const,

which gives V = const.

Non-potential forces
The generalized non-potential forces are

Qnon-pot,1 = u − R1i1 = u − R1q̇1, u is the applied voltage,

Qnon-pot,2 = −ub − R2i2 = −ub − R2q̇2,

ub is the counter-electromotive force in volts,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇3 = τ3 − ff ric−3q̇3, τ3 = ki2 = kq̇2

is a twisting moment.

Lagrange equations
Using the obtained formulas for T , V , and L = T − V we are able to derive the

dynamic Lagrange equations:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3,

which can be represented in the standard matrix format (12.5)

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

L1 −μ 0

−μ L2 0

0 0
1

2

[

m1r
2
1 + m2r

2
2 + m3r

2
2 + m4

r2
4 r2

2

r2
3

]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

C (q, q̇) =
∥
∥
∥
∥
∥
∥

R1 0 0
0 R2 0
0 −k ff ric−3

∥
∥
∥
∥
∥
∥

, g (q) =
∥
∥
∥
∥
∥
∥

0
0
0

∥
∥
∥
∥
∥
∥

, τ =
∥
∥
∥
∥
∥
∥

u

−ub

0

∥
∥
∥
∥
∥
∥

.

12.9 Stanford/JPL robot manipulator

Consider now the Stanford/JPL manipulator represented in Fig. 12.9.

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := x, q4 := y.
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Figure 12.9 The Stanford/JPL manipulator.

Kinetic energy
The kinetic energy T =∑5

i=1 Tmi
of this system consists of the terms Tmi

, which
can be calculated based on the König formula:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

,

which in our case leads to the following expressions:

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)

= Tm1,rot−0 = 1

2
I1zz ϕ̇

2
1 = 1

2
I1zz q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,rot−0 =

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥∥
∥
∥
∥
∥
∥

m2d
2
2 + I2xx 0 0

0 m2d
2
2 + I2yy −I2yz

0 −I2zy I2zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠

= 1

2

(

m2d
2
2 + I2yy

)

q̇2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)

= Tm3,0 + Tm3,rot−0 = 1

2
m3

(

ẋ2 + (x + d3)
2 ϕ̇2

1

)

+

1

2

⎛

⎝

0
ϕ̇1
ϕ̇2

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 I3yy 0
0 0 I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
ϕ̇2

⎞

⎠=

1

2

[

m3

(

q̇2
3 + (q3 + d3)

2 q̇2
1

)

+ I3yy q̇
2
1 + I3zz q̇

2
2

]

,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 1

2
m4

(

ẋ2 + (x + l3)
2 ϕ̇2

1

)

+
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1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I4xx 0 0

0 m4d
2
4 + I4yy 0

0 0 m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠+

m4

⎛

⎜
⎝

−d4 cosϕ1 cosϕ2ϕ̇1 + d4 sinϕ1 sinϕ2ϕ̇2

−d4 cosϕ2ϕ̇2

d4 sinϕ1 cosϕ2ϕ̇1 + d4 cosϕ1 sinϕ2ϕ̇2

⎞

⎟
⎠

�

×
⎛

⎝

ẋ cosϕ1 − (x + l3) sinϕ1ϕ̇1
0

−ẋ sinϕ1 − (x + l3) cosϕ1ϕ̇1

⎞

⎠= 1

2

(

m4d
2
4 + I4zz

)

q̇2
2 + m4q̇

2
3+

1

2

[

I4xx sin2 q2 + m4 (q3 + l3)
2 +

(

m4d
2
4 + I4yy

)

cos2 q2

]

q̇2
1

−m4d4 [cosq2q̇1q̇3 − (q3 + l3) sinq2q̇1q̇2] ,

Tm5 = Tm5,0 + Tm5,rot−0 + m4
(

vm5−c.i.−0,v0
)= Tm5,0 + Tm5,rot−0 = 1

2
m4×

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

− (l4 + y) cosϕ1 cosϕ2ϕ̇1 + (l4 + y) sinϕ1 sinϕ2ϕ̇2 − ẏ sinϕ1 cosϕ2

− (l4 + y) cosϕ2ϕ̇2 − ẏ sinϕ2

(l4 + y) sinϕ1 cosϕ2ϕ̇1 + (l4 + y) cosϕ1 sinϕ2ϕ̇2 − ẏ cosϕ1 cosϕ2

⎞

⎟
⎠

+
⎛

⎝

ẋ cosϕ1 − (x + l3) sinϕ1ϕ̇1
0

−ẋ sinϕ1 − (x + l3) cosϕ1ϕ̇1

⎞

⎠

∥
∥
∥
∥
∥
∥

2

+

1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I4xx 0 0

0 I4yy 0

0 0 I4zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠=

1

2

[

m5 (q3 + l3)
2 + I5xx sin2 q2 +

(

m5 (l4 + q4)
2 + I5yy

)

cos2 q2

]

q̇2
1

+1

2

[

I5zz + m5 (l4 + q4)
2
]

q̇2
2 + 1

2
m5q̇

2
4 + 1

2
m5q̇

2
5

−m5 (l4 + q4) [q̇1q̇3 cosq2 − (q3 + l3) q̇1q̇2 sinq2]+
m5 [(q3 + l3) q̇1q̇4 cosq2] .

Potential energy
The potential energy V =∑5

i=1 Vmi
has components

Vm1 = const, Vm2 = const, Vm3 = const,

Vm4 = m4gd4 sinϕ2 = m4gd4 sinq2,

Vm5 = m5g (y + l4) sinϕ2 = m5g (q4 + l4) sinq2,

which gives

V = m4gd4 sinq2 + m5g (q4 + l4) sinq2 + const.
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Non-potential forces
The non-potential generalized forces are given by the following formulas:

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a torsion force,

Qnon-pot,2 = τ2 − ff ric−2ϕ̇2 = τ2 − ff ric−2q̇2,

τ2 is a torsion force,

Qnon-pot,3 = F3 − ff ric−3ẋ = F3 − ff ric−3q̇3,

F3 is a force acting on the horizontal movement,

Qnon-pot,4 = F4 − ff ric−4ẏ = F4 − ff ric−4q̇4,

F4 is a force acting on the transversal movement.

Lagrange equations
Based on the obtained expressions for T , V , and L = T − V we are able to derive

the Lagrange equations:

∂

∂q̇4
L = m5 (q3 + l3) q̇1 cosq2 + m5q̇4,

which in the standard matrix format (12.5) is

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where the matrix

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) D12 (q) D13 (q) D14 (q)

D21 (q) D22 (q) 0 0

D31 (q) 0 m3 + m4 + m5 0

D41 (q) 0 0 m5

∥
∥
∥
∥
∥
∥
∥
∥
∥

contains the following block elements:

D11 (q) = I1zz + I2yy + I3yy + m2d
2
2 + m3 (q3 + d3)

2 +
I4xx sin2 q2 + m4 (q3 + l3)

2 +
(

m4d
2
4 + I4yy

)

cos2 q2+
m5 (q3 + l3)

2 + I5xx sin2 q2 +
(

m5 (l4 + q4)
2 + I5yy

)

cos2 q2,

D21 (q) = [m4d4 + m5 (l4 + q4)] (q3 + l3) sinq2,

D31 (q) = − (m4d4 + m5 (l4 + q4)) cosq2,

D41 (q) = m5 (q3 + l3) cosq2,

D12 (q) = (m4d4 + m5 (l4 + q4)) (q3 + l3) sinq2,

D22 (q) = I3zz + m4d
2
4 + I4zz + I5zz + m5 (l4 + q4)

2 ,

D13 (q) = − (m4d4 + m5 (l4 + q4)) cosq2,
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D14 (q) = m5 (q3 + l3) cosq2,

and the matrix

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) C12 (q, q̇) 0 0

C21 (q, q̇) C22 (q, q̇) 0 C24 (q, q̇)

C31 (q, q̇) 0 ff ric−3 −2m5 cosq2q̇1

C41 (q, q̇) C42 (q, q̇) 2m5 cosq2q̇1 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥
∥

has the elements

C11 (q, q̇) = ff ric−1 + 2
[(

−m5 (l4 + q4)
2 − I5yy

)

sinq2 cosq2

]

q̇2+
2
[(

I4xx − m4d
2
4 − I4yy + I5xx

)

sinq2 cosq2

]

q̇2+
2 [m4 (q3 + l3) + m3 (q3 + d3)] q̇3+
2m5 (q3 + l3) q̇3 + 2m5 (l4 + q4) q̇4 cos2 q2,

C21 (q, q̇) = m5 (q3 + l3) q̇4 sinq2−
[(

I4xx − m4d
2
4 − I4yy + I5xx

)

sinq2 cosq2

]

q̇1−
[(

−m5 (l4 + q4)
2 − I5yy

)

sinq2 cosq2

]

q̇1,

C31 (q, q̇) = −2 [m3 (q3 + d3) + m4 (q3 + l3)] q̇1 − 2m5 (q3 + l3) q̇1,

C41 (q, q̇) = −2m5 (q3 + l3) sinq2q̇2 − m5 (l4 + q4) q̇1 cos2 q2,

C12 (q, q̇) = +2 [(m4d4 + m5 (l4 + q4)) sinq2] q̇3,

+ [m4d4 + m5 (l4 + q4)] (q3 + l3) cosq2q̇2,

C22 (q, q̇) = ff ric−2 + 2m5 (l4 + q4) q̇4,

C42 (q, q̇) = −m5 (l4 + q4) q̇2,

C24 (q, q̇) = m5 (q3 + l3) q̇1 sinq2,

with

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
m4gd4 cosq2 + m5g (q4 + l4) cosq2

0
m5g sinq2

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2
F3
F4

∥
∥
∥
∥
∥
∥
∥
∥

.

12.10 Unimate 2000 manipulator

Let us consider here the robot manipulator Unimate 2000, represented in Fig. 12.10.
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Figure 12.10 Robot manipulator Unimate 2000.

Generalized coordinates
The generalized coordinates of this robot are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4.

Kinetic energy
The kinetic energy T =∑4

i=1 Tmi
contains the elements Tmi

, which are calculated
as in the previous sections:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

,

where

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,rot−0 = 1

2
ϕ̇2

1

(

I1xx

)= 1

2

(

I1xx

)

q̇2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,rot−0 =

1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I2xx 0 0

0 m2d
2
2 + I2yy 0

0 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

= 1

2

[

I2xx q̇
2
1 sin2 q2 +

(

m2d
2
2 + I2yy

)

q̇2
1 cos2 q2 +

(

m2d
2
2 + I2zz

)

q̇2
2

]

,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)=

1

2
m3

[

l2
2

(

cos2 ϕ2

)

ϕ̇2
1 + l2

2 ϕ̇2
2

]

+ 1

2

⎛

⎜
⎝

ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠

�

×
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∥
∥
∥
∥
∥
∥

I3xx 0 0
0 m3d

2
3 + I3yy 0

0 0 m3d
2
3 + I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎠

+m3

⎛

⎝

ϕ̇1d3 sinϕ1 cos (ϕ2 + ϕ3) + (ϕ̇2 + ϕ̇3) d3 cosϕ1 sin (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) d3 cos (ϕ2 + ϕ3)

ϕ̇1d3 cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3) d3 sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎠

�
×

⎛

⎝

−ϕ̇2l2 cosϕ1 sinϕ2 − ϕ̇1l2 sinϕ1 cosϕ2
ϕ̇2l2 cosϕ2

−ϕ̇1l2 cosϕ1 cosϕ2 + ϕ̇2l2 sinϕ1 sinϕ2

⎞

⎠= 1

2
m3

[

l2
2 cos2 q2q̇

2
1 + l2

2 q̇2
2

]

+

1

2

[

I3xx sin2 (q2 + q3) +
(

m3d
2
3 + I3yy

)

cos2 (q2 + q3)
]

q̇2
1+

1

2

(

m3d
2
3 + I3zz

)

(q̇2 + q̇3)
2 −

m3

[

d3l2 cosq2q̇
2
1 cos (q2 + q3) + d3l2 (q̇2 + q̇3) q̇2 cosq3

]

,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

1

2
m4

[

ϕ̇2
1 [l3 cos (ϕ2 + ϕ3) − l2 cosϕ2]2 + ϕ̇2

2 l2
2

]

+
1

2
m4

(

ϕ̇2
2 + ϕ̇2

3 + 2ϕ̇2ϕ̇3

)

l2
3 sin2 (ϕ2 + ϕ3)−

1

2
m4 [2ϕ̇2 (ϕ̇2 + ϕ̇3) l2l3 sinϕ2 sin (ϕ2 + ϕ3)]+

1

2

⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3 + ϕ4)

ϕ̇1 cos (ϕ2 + ϕ3 + ϕ4)

ϕ̇2 + ϕ̇3 + ϕ̇4

⎞

⎠

�
×

∥
∥
∥
∥
∥
∥

I4xx 0 0
0 m4d

2
4 + I4yy 0

0 0 m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3 + ϕ4)

ϕ̇1 cos (ϕ2 + ϕ3 + ϕ4)

ϕ̇2 + ϕ̇3 + ϕ̇4

⎞

⎠+

m4

⎛

⎜
⎜
⎜
⎜
⎝

−ϕ̇1d4 sinϕ1 cos (ϕ2 + ϕ3 + ϕ4)−
(ϕ̇2 + ϕ̇3 + ϕ̇4) d4 cosϕ1 sin (ϕ2 + ϕ3 + ϕ4)

(ϕ̇2 + ϕ̇3 + ϕ̇4) d4 cos (ϕ2 + ϕ3 + ϕ4)

−ϕ̇1d4 cosϕ1 cos (ϕ2 + ϕ3 + ϕ4)+
(ϕ̇2 + ϕ̇3 + ϕ̇4) d4 sinϕ1 sin (ϕ2 + ϕ3 + ϕ4)

⎞

⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎝

−ϕ̇2l2 cosϕ1 sinϕ2 + (ϕ̇2 + ϕ̇3) l3 cosϕ1 sin (ϕ2 + ϕ3)

+ϕ̇1 sinϕ1 (l3 cos (ϕ2 + ϕ3) − l2 cosϕ2)

ϕ̇2l2 cosϕ2 − (ϕ̇2 + ϕ̇3) l3 cos (ϕ2 + ϕ3)

ϕ̇2l2 sinϕ1 sinϕ2 − (ϕ̇2 + ϕ̇3) l3 sinϕ1 sin (ϕ2 + ϕ3)

+ϕ̇1 cosϕ1 (l3 cos (ϕ2 + ϕ3) − l2 cosϕ2)

⎞

⎟
⎟
⎟
⎟
⎠

= 1

2
m4

[

[l3 cos (q2 + q3) − l2 cosq2]2 q̇2
1

]

+ 1

2
m4l

2
2 q̇2

2



Collection of electromechanical models 421

1

2

[

I4xx sin2 (q2 + q3 + q4) +
(

m4d
2
4 + I4yy

)

cos2 (q2 + q3 + q4)
]

q̇2
1−

m4 [d4 cos (q2 + q3 + q4)] [l3 cos (q2 + q3) − l2 cosq2] q̇2
1+

1

2
m4

[

l2
3 sin2 (q2 + q3)

]

(q̇2 + q̇3)
2 −

m4 [l2l3 sinq2 sin (q2 + q3)] (q̇2 + q̇3) q̇2+
1

2

[

m4d
2
4 + I4zz

]

(q̇2 + q̇3 + q̇4)
2 +

m4 [d4l2 cos (q3 + q4)] (q̇2 + q̇3 + q̇4) q̇2−
m4 [d4l3 cos (q4)] (q̇2 + q̇3 + q̇4) (q̇2 + q̇3) .

Potential energy
The potential energy V may be calculated as V =∑4

i=1 Vmi
, with

Vm1 = const,

Vm2 = m2g (d2 sinϕ2 + const) = m2gd2 (sinq2 + const) ,

Vm3 = m3g (−d3 sin (ϕ2 + ϕ3) + l2 sinϕ2 + const) ,

= m3g (−d3 sin (q2 + q3) + sinq2 + const) ,

Vm4 = m4g (−l3 sin (ϕ2 + ϕ3) + l2 sinϕ2 + d4 sin (ϕ2 + ϕ3 + ϕ4) + const) ,

= m4g (−l3 sin (q2 + q3) + l2 sinq2 + d4 sin (q2 + q3 + q4) + const) ,

which gives

V = m2gd2 sinq2 + m3g (−d3 sin (q2 + q3) + l2 sinq2)+
m4g [−l3 sin (q2 + q3) + l2 sinq2 + d4 sin (q2 + q3 + q4)] + const.

Non-potential forces
The generalized non-potential forces are as follows:

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

τi is a torsion force, i = 1, ...,4.

Lagrange equations
Based on the obtained T and V , we are able to derive the dynamic Lagrange equa-

tions:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,4, L = T − V,

which can be represented in the standard matrix format (12.5)

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,
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where the following matrices participate:

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) 0 0 0

0 D22 (q) D23 (q) D24 (q)

0 D32 (q) D33 (q) D34 (q)

0 D42 (q) D43 (q) m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = I1xx + I2xx sin2 q2 +
(

m2d
2
2 + I2yy

)

cos2 q2+
m3l

2
2 cos2 q2 + I3xx sin2 (q2 + q3) +

(

m3d
2
3 + I3yy

)

cos2 (q2 + q3)−
2m3d3l2 cosq2 cos (q2 + q3) + m4 [l3 cos (q2 + q3) − l2 cosq2]2 −
2m4d4l3 cos (q2 + q3) cos (q2 + q3 + q4)+
2m4 [d4l2 cosq2 cos (q2 + q3 + q4)] + I4xx sin2 (q2 + q3 + q4)+
(

m4d
2
4 + I4yy

)

cos2 (q2 + q3 + q4) ,

D22 (q) = m2d
2
2 + I2zz + [m3 + m4] l2

2 + m3d
2
3 + I3zz + m4d

2
4 + I4zz+

m4l
2
3 sin2 (q2 + q3) − 2l2 [m3d3 cosq3] − 2m4l2l3 sinq2 sin (q2 + q3)

+2m4d4l2 cos (q3 + q4) − 2m4d4l3 cos (q4) ,

D32 (q) = m3d
2
3 + I3zz + m4l

2
3 sin2 (q2 + q3)−

m3d3l2 cosq3 − m4l2l3 sinq2 sin (q2 + q3)+
m4l2d4 cos (q3 + q4) + m4d

2
4 + I4zz − 2m4d4l3 cosq4,

D42 (q) = m4d
2
4 + I4zz + m4d4l2 cos (q3 + q4) − m4d4l3 cosq4,

D23 (q) = m3d
2
3 + I3zz + m4l

2
3 sin2 (q2 + q3) − l2 [m3d3 cosq3]−

m4l2l3 sinq2 sin (q2 + q3) − 2m4d4l3 cos (q4)+
[

m4d
2
4 + I4zz

]

+ m4 [d4l2 cos (q3 + q4)] ,

D33 (q) = m3d
2
3 + I3zz + m4l

2
3 sin2 (q2 + q3) +

[

m4d
2
4 + I4zz

]

−
2m4 [d4l3 cosq4] ,

D43 (q) = m4d
2
4 + I4zz − m4d4l3 cosq4,

D24 (q) = m4d
2
4 + I4zz + m4d4l2 cos (q3 + q4) − m4d4l3 cos (q4) ,

D34 (q) = m4d
2
4 + I4zz − m4d4l3 cosq4,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) 0 0 0

C21 (q, q̇) C22 (q, q̇) C23 (q, q̇) C24 (q, q̇)

C31 (q, q̇) C32 (q, q̇) C33 (q, q̇) C34 (q, q̇)

C41 (q, q̇) C42 (q, q̇) C43 (q, q̇) C44 (q, q̇)

∥
∥
∥
∥
∥
∥
∥
∥
∥

,
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C11 (q, q̇) = ff ric−1 + 2
[(

I2xx − m2d
2
2 − I2yy − m3l

2
2

)

sinq2 cosq2

]

q̇2+
2
[(

I3xx − m3d
2
3 − I3yy

)

sin (q2 + q3) cos (q2 + q3)
]

(q̇2 + q̇3)+
2m3d3l2 cosq2 sin (q2 + q3) q̇3 + [2m3d3l2 sin (2q2 + q3)] q̇2+
2m4 [l3 cos (q2 + q3) − l2 cosq2]×
[−l3 (q̇2 + q̇3) sin (q2 + q3) + l2 sinq2q̇2] +

[

2
(

I4xx − m4d
2
4 − I4yy

)]

×
[sin (q2 + q3 + q4) cos (q2 + q3 + q4)] (q̇2 + q̇3 + q̇4)+
2m4d4 sin (2q2 + 2q3 + q4) [(l3 − l2) q̇2 + l3q̇3]−
2m4d4 sin (q2 + q3 + q4) [l2 (q̇3 + q̇4) cosq2 + cos (q2 + q3) q̇4] ,

C21 (q, q̇) =
[(

−I2xx + m2d
2
2 + I2yy

)

sinq2 cosq2

]

q̇1+
[

m3l
2
2 sinq2 cosq2

]

q̇1+
[

I3yy − I3xx + m3d
2
3

]

[sin (q2 + q3) cos (q2 + q3)] q̇1−
[

m3d3l2 sin (2q2 + q3) − m4l
2
2 cosq2 sinq2

]

q̇1−
m4 [l3l2 sin (2q2 + q3)] q̇1 + m4

[

l2
3 cos (q2 + q3) sin (q2 + q3)

]

q̇1−
[sin (q2 + q3 + q4) cos (q2 + q3 + q4)]

[(

I4xx − m4d
2
4 − I4yy

)]

q̇1

−m4d4 (l3 + l2) [sin (2q2 + 2q3 + q4)] q̇1,

C31 (q, q̇) = −
[

I3xx − m3d
2
3 − I3yy

]

[sin (q2 + q3) cos (q2 + q3)] q̇1−
m3d3l2 [cosq2 sin (q2 + q3)] q̇1+
m4l3 sin (q2 + q3) [l3 cos (q2 + q3) − l2 cosq2] q̇1−
[

I4xx − m4d
2
4 − I4yy

]

[sin (q2 + q3 + q4) cos (q2 + q3 + q4)] q̇1−
m4d4 sin (q2 + q3 + q4) [l3 cos (q2 + q3) − l2 cosq2] q̇1−
m4d4l3 cos (q2 + q3 + q4) sin (q2 + q3) q̇1,

C41 (q, q̇) = −
(

I4xx − m4d
2
4 − I4yy

)

[sin (q2 + q3 + q4) cos (q2 + q3 + q4)] q̇1

−m4d4 sin (q2 + q3 + q4) [l3 cos (q2 + q3) − l2 cosq2] q̇1,

C22 (q, q̇) = ff ric−2 + m4l
2
3 [sin (q2 + q3) cos (q2 + q3)] (q̇2 + 2q̇3)

−m4l2l3 sin (2q2 + q3) (q̇2) ,

C32 (q, q̇) = − [m3d3l2 sinq3] (q̇2 + q̇3) + m4l
2
3 [sin (q2 + q3) cos (q2 + q3)] q̇2

−m4l2l3 ([sin (2q2 + q3)] q̇2 + [sinq2 cos (q2 + q3)] (q̇2 + q̇3))

+ [m4d4l2 sin (q3 + q4)] q̇2,

C42 (q, q̇) = m4 [d4l2 sin (q3 + q4)] q̇2 − m4 [d4l3 sinq4] (q̇2 + q̇3 + q̇4) ,

C23 (q, q̇) = m3l2d3 [sinq3] (2q̇2+q̇3)−m4l2l3 [sinq2 cos (q2+q3)] (2q̇2+q̇3)
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−m4 [d4l2 sin (q3 + q4)] (2q̇2 + q̇3 + q̇4)+
m4l

2
3 [sin (q2 + q3) cos (q2 + q3)] q̇3,

C33 (q, q̇) = ff ric−3 + m4l
2
3 [sin (q2 + q3) cos (q2 + q3)] (q̇3 + 2q̇2)

+m3d3l2 [sinq3] q̇2 − m4l2l3 [sinq2 cos (q2 + q3)] q̇2,

C43 (q, q̇) = −m4d4l3 [sinq4] (q̇2 + q̇3 + q̇4) ,

C24 (q, q̇) = m4d4l3 sinq4 (2q̇2 + 2q̇3 + q̇4)−
m4 [d4l2 sin (q3 + q4)] (2q̇2 + q̇3 + q̇4) ,

C34 (q, q̇) = m4 [d4l3 sinq4] (2q̇2 + 2q̇3 + q̇4) ,

C44 (q, q̇) = ff ric−4 + m4 [d4l3 sinq4] (q̇2 + q̇3) .

The vectors g and τ are as follows:

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥

g1 (q)

g2 (q)

g3 (q)

g4 (q)

∥
∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥

τ1

τ2

τ3

τ4

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

g1 (q) = 0,

g2 (q) = −m2gd2 cosq2 + m3g (d3 cos (q2 + q3) − l2 cosq2)+
m4g [l3 cos (q2 + q3) − l2 cosq2] − m4g [d4 cos (q2 + q3 + q4)] ,

g3 (q) = m3gd3 cos (q2 + q3) + m4g [l3 cos (q2 + q3) − d4 cos (q2 + q3 + q4)] ,

g4 (q) = −m4gd4 cos (q2 + q3 + q4) .

12.11 Robot manipulator with swivel base

Consider now the robot manipulator with swivel base of three degrees of freedom
represented in Fig. 12.11.

Figure 12.11 Robot manipulator with swivel base.
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Generalized coordinates
The generalized coordinates of the considered mechanical system are

q1 := ϕ1, q2 := x, q3 := ϕ2.

Kinetic energy
The kinetic energy T =∑2

i=1 Tmi
has two elements, Tmi (i = 1,2), which can be

calculated as in the examples before:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

.

In our case we have

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)= 1

2
I1zz ϕ̇

2
1 = 1

2
I1zz q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= 1

2
m2

(

x2ϕ̇2
1 + ẋ2

)

+

1

2

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥
∥

I2xx 0 0

0 m2d
2
2 + I2yy 0

0 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 sinϕ2

ϕ̇1 cosϕ2

ϕ̇2

⎞

⎟
⎠+

m2

⎛

⎝

ϕ̇1d2 cosϕ1 cosϕ2 − ϕ̇2d2 sinϕ1 sinϕ2
ϕ̇2d2 cosϕ2

−ϕ̇1d2 sinϕ1 cosϕ2 − ϕ̇2d2 cosϕ1 sinϕ2

⎞

⎠

�⎛

⎝

−ϕ̇1x sinϕ1 + ẋ cosϕ1
0

−ϕ̇1x cosϕ1 − ẋ sinϕ1

⎞

⎠

= 1

2

[

I2xx q̇
2
1 sin2 q3 +

(

m2d
2
2 + I2yy

)

q̇2
1 cos2 q3 +

(

m2d
2
2 + I2zz

)

q̇2
3

]

+
1

2
m2

(

q2
2 q̇2

1 + q̇2
2

)

+ m2 [q̇1q̇2d2 cosq3 + q̇1q̇3q2d2 sinq3] .

Potential energy
The potential energy V =∑2

i=1 Vmi
contains

Vm1 = const, Vm2 = mgd2 sinϕ2 = mgd2 sinq3,

which gives

V = mgd2 sinq3 + const.

Non-potential forces
The generalized forces are given by the following formulas:

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a torsion force,
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Qnon-pot,2 = F2 − ff ric−2ẏ = F2 − ff ric−2q̇2,

F2 is a force of horizontal movement,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇2 = τ3 − ff ric−3q̇3,

τ3 is a torsion force.

Lagrange equations
Using the obtained expressions for T and V , we are able to derive the dynamic

Lagrange equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3, L = T − V,

which in the standard matrix format (12.5) gives

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥

D11 (q) [m2d2 cosq3] [m2q2d2 sinq3]

[m2d2 cosq3] m2 0

[m2q2d2 sinq3] 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥
∥

,

with D11 (q) equal to

D11 (q) =
[

I1zz +
(

m2d
2
2 + I2yy

)

cos2 q3

]

+ I2xx sin2 q3 + m2q
2
2 .

The matrix C (q, q̇) is as follows:

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) 0 m2q2d2 cosq3q̇3

0 ff ric−2 −m2d2 sinq3q̇1

C31 (q, q̇) 2m2d2 sinq3q̇1 ff ric−3

∥
∥
∥
∥
∥
∥
∥

,

where

C11 (q, q̇) = ff ric−1 − 2
[

m2d
2
2 sinq3 cosq3

]

q̇3+
2
[(

I2xx − I2yy

)

sinq3 cosq3
]

q̇3 + 2m2q2q̇2,

C21 (q, q̇) = −m2d2 sinq3q̇3 − m2q2q̇1,

C31 (q, q̇) = − [(I2xx − I2yy

)

sinq3 cosq3
]

q̇1 +
[

m2d
2
2 sinq3 cosq3

]

q̇1,

and

g (q) =
∥
∥
∥
∥
∥
∥

0
0

−mgd2 cosq3

∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥

τ1

F2

τ3

∥
∥
∥
∥
∥
∥
∥

.
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12.12 Cylindrical robot with spring

Consider the cylindrical robot with spring represented in Fig. 12.12.

Figure 12.12 Cylindrical robot with spring.

Generalized coordinates
Select the generalized coordinates as

q1 := ϕ, q2 := z, q3 := x.

Kinetic energy
The kinetic energy T =∑5

i=1 Tmi
consists of the elements Tmi

, which can be cal-
culated using standard formulas:

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

.

For this system we have

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)

= Tm1,rot−0 = 1

2
I1yy ϕ̇

2 = 1

2
I1yy q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)

= Tm2,rot−0 = 1

2
I2yy ϕ̇

2 = 1

2
I2yy q̇

2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)

= Tm3,0 + Tm3,rot−0 = 1

2
m3ż

2+

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 I3yy 0
0 0 I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠= 1

2

[

m3q̇
2
3 + I3yy q̇

2
1

]

,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 0.
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The mass of the spring m4 is considered negligible. Now we have

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)

= 1

2
m5

(

ż2 + ẋ2 + m5x
2ϕ̇2

)

+

1

2

⎛

⎝

0
ϕ̇

0

⎞

⎠

� ∥∥
∥
∥
∥
∥

I5xx 0 0
0 I5yy 0
0 0 I5zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇

0

⎞

⎠=

1

2

[

m5

(

q2
2 q̇2

1 + q̇2
2 + q̇2

3

)

+ I5yy q̇
2
1

]

.

Potential energy
The potential energy V =∑5

i=1 Vmi
has

Vm1 = const, Vm2 = const, Vm3 = m3gz = m3gq3,

Vm4 = 1

2
k (x − x0)

2 = 1

2
k
(

q2 − q20

)2
,

Vm5 = m5gz = m5gq3,

which gives

V = m3gq3 + 1

2
k
(

q2 − q20

)2 + m5gq3 + const.

Non-potential forces
The generalized non-potential forces are

Qnon-pot,1 = τ1 − ff ric−1ϕ̇ = τ1 − ff ric−1q̇1,

τ1 is a torsion force,

Qnon-pot,2 = F2 − ff ric−2ẋ = F2 − ff ric−2q̇2,

F2 is a force of horizontal movement,

Qnon-pot,3 = F3 − ff ric−3ẏ = F3 − ff ric−3q̇3,

F3 is a force of vertical movement.

Lagrange equations
Using the obtained expressions for T and V in the dynamic Lagrange equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3, L = T − V,

we get the following representation in matrix format:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,
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where

D (q) =
∥
∥
∥
∥
∥
∥

[

I1yy + I2yy + I3yy + I5yy

]+ m5q
2
2 0 0

0 m5 0
0 0 m3 + m5

∥
∥
∥
∥
∥
∥

,

C (q, q̇) =
∥
∥
∥
∥
∥
∥

ff ric−1 + 2m5q2q̇2 0 0
−m5q2q̇1 ff ric−2 0

0 0 ff ric−3

∥
∥
∥
∥
∥
∥

,

g (q) =
∥
∥
∥
∥
∥
∥

0
k
(

q2 − q20

)

m3g + m5g

∥
∥
∥
∥
∥
∥

, τ =
∥
∥
∥
∥
∥
∥

τ1
F2
F3

∥
∥
∥
∥
∥
∥

.

12.13 Non-ordinary manipulator with shock absorber

Consider the non-ordinary manipulator with a shock absorber which is presented in
Fig. 12.13.

Figure 12.13 Non-ordinary manipulator with shock absorber.

Generalized coordinates
The generalized coordinates of the considered systems are

q1 := x, q2 := y, q3 := ϕ1, q4 := ϕ2, q5 := ϕ3.

Kinetic energy
The kinetic energy T =∑5

i=1 Tmi
has terms Tmi

, which can be calculated as

Tmi
= Tmi,0 + Tmi,rot−0 + 2mi

(

vmi−c.i.−0,v0
)

,

Tmi,0 = 1

2
mi ‖v0‖2 , Tmi,rot−0 = 1

2

(

ω, Ii,0ω
)

,

so that

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,0 + Tm1,rot−0 = 1

2
m1ẋ

2 + 1

4
m1ẋ

2 = 3

4
m1q̇

2
1 ,
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Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm1−c.i.−0,v0
)=

Tm2,0 + Tm2,rot−0 = 1

2
m2ẋ

2 + 1

2
m2ẋ

2 = 3

4
m2q̇

2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)=

Tm3,0 + Tm3,rot−0 = 1

2
m3ẋ

2 + 1

2
m3ẏ

2 + 1

2
I3yyϕ̇

2
1 =

1

2
m3q̇

2
1 + 1

2
m3q̇

2
2 + 1

2
I3yy q̇

2
3 ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 1

2
m4ẋ

2 + 1

2
m4ẏ

2+

1

2

⎛

⎜
⎝

ϕ̇1 cosϕ2

ϕ̇1 sinϕ2

ϕ̇2

⎞

⎟
⎠

� ∥
∥
∥
∥
∥
∥

I4xx 0 0
0 m4d

2
4 + I4yy 0

0 0 m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 cosϕ2

ϕ̇1 sinϕ2

ϕ̇2

⎞

⎟
⎠+

m4

⎛

⎜
⎝

ϕ̇1d4 sinϕ1 sinϕ2 + ϕ̇2d4 cosϕ1 cosϕ2

−ϕ̇2d4 sinϕ2

ϕ̇1d4 cosϕ1 sinϕ2 − ϕ̇2d4 sinϕ1 cosϕ2

⎞

⎟
⎠

�⎛

⎝

ẋ

ẏ

0

⎞

⎠

= 1

2
m4q̇

2
1 + 1

2
m4q̇

2
2 + 1

2

[

m4d
2
4 + I4zz

]

q̇2
4+

1

2

[

I4xx cos2 q4 +
(

m4d
2
4 + I4yy

)

sin2 q4

]

q̇2
3+

m4 [(d4 sinq3 sinq4) q̇1q̇3 + (d4 cosq3 cosq4) q̇1q̇4 − (d4 sinq4) q̇2q̇4] ,

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)=

1

2
m5

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1l4 sinϕ1 sinϕ2 + ϕ̇2l4 cosϕ1 cosϕ2 + ẋ

−ϕ̇2l4 sinϕ2 + ẏ

ϕ̇1l4 cosϕ1 sinϕ2 − ϕ̇2l4 sinϕ1 cosϕ2

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

2

+

1

2

⎛

⎜
⎝

ϕ̇1 cos (ϕ2 + ϕ3)

−ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠

�
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I5xx 0 0

0
m5d

2
5+I5yy

0

0 0
m5d

2
5+I5zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

ϕ̇1 cos (ϕ2 + ϕ3)

−ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎟
⎠+

m5

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ϕ̇1d5 sinϕ1 sin (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) d5 cosϕ1 cos (ϕ2 + ϕ3)

(ϕ̇2 + ϕ̇3) d5 sin (ϕ2 + ϕ3)

−ϕ̇1d5 cosϕ1 sin (ϕ2 + ϕ3)

+ (ϕ̇2 + ϕ̇3) d5 sinϕ1 cos (ϕ2 + ϕ3)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�⎛
⎜
⎜
⎜
⎜
⎜
⎝

ϕ̇1l4 sinϕ1 sinϕ2

+ϕ̇2l4 cosϕ1 cosϕ2 + ẋ

−ϕ̇2l4 sinϕ2 + ẏ

ϕ̇1l4 cosϕ1 sinϕ2

−ϕ̇2l4 sinϕ1 cosϕ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 1

2
m5

(

q̇2
1 + q̇2

2

)

+ 1

2

[

m5l
2
4 sin2 q4 + I5xx cos2 (q4 + q5)

]

q̇2
3+
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1

2

[(

m5d
2
5 + I5yy

)

sin2 (q4 + q5) − 2m5l4d5 sinq4 sin (q4 + q5)
]

q̇2
3+

1

2
m5l

2
4 q̇2

4 + 1

2

[

m5d
2
5 + I5zz

]

(q̇4 + q̇5)
2 +

m5 [l4 sinq3 sinq4 − d5 sinq3 sin (q4 + q5)] q̇1q̇3 + m5l4 [cosq3 cosq4] q̇1q̇4−
m5l4 [sinq4] q̇2q̇4 − m5l4d5 [cosq5] (q̇4 + q̇5) q̇4−
m5d5 [cosq3 cos (q4 + q5)] (q̇4 + q̇5) q̇1 + m5d5 [sin (q4 + q5)] (q̇4 + q̇5) q̇2.

Potential energy
The potential energy V = Vr +∑5

i=1 Vmi
is as follows:

Vr = 1

2
k (y − y0)

2 = 1

2
k (q2 − q20)

2 ,

Vm1 = m1gx sinα = m1gq1 sinα, Vm2 = m2gx sinα = m2gq1 sinα,

Vm3 = m3g [x sinα + (d3 + y) cosα] = m3g [q1 sinα + (d3 + q2) cosα] ,

Vm4 = m4g [x sinα + (l3 + y) cosα − d4 cosϕ2 cosα − d4 sinα cosϕ1 sinϕ2]

= m4g [q1 sinα + (l3 + q2) cosα − d4 cosq4 cosα − d4 sinα cosq3 sinq4] ,

Vm5 = m5g [x sinα + (l3 + y) cosα − l4 cosϕ2 cosα + l4 sinϕ2 sinα cosϕ1]

+m5g [d5 cos (ϕ3 + ϕ2) cosα + d5 sin (ϕ3 + ϕ2) sinα cosϕ1] =
m5g [q1 sinα + (l3 + q2) cosα − l4 cosq4 cosα + l4 sinq4 sinα cosq3]

+m5g [d5 cos (q5 + q4) cosα + d5 sin (q5 + q4) sinα cosq3] ,

which gives

V = 1

2
k (q2 − q20)

2 + [m1g + m2g + m3g + m4g + m5g]q1 sinα+
m3g [(d3 + q2) cosα]+
m4g [(l3 + q2) cosα − d4 cosq4 cosα − d4 sinα cosq3 sinq4]+
m5g [(l3 + q2) cosα − l4 cosq4 cosα + l4 sinq4 sinα cosq3]+
m5g [d5 cos (q5 + q4) cosα + d5 sin (q5 + q4) sinα cosq3] .

Non-potential forces
The generalized non-potential forces are given by

Qnon-pot,1 = F1 − ff ric−1ẋ = F1 − ff ric−1q̇1,

F1 it is a force of longitudinal movement,

Qnon-pot,2 = −cẏ = −cq̇2,

c is the coefficient of viscous friction,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇3 = τ3 − ff ric−3q̇3,

τ3 is a twisting moment,
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Qnon-pot,4 = τ4 − ff ric−4ϕ̇4 = τ4 − ff ric−4q̇4,

τ4 is a twisting moment,

Qnon-pot,5 = τ5 − ff ric−5ϕ̇5 = τ5 − ff ric−5q̇5,

τ5 is a twisting moment.

Lagrange equations
Based on the obtained formulas for T and V , we are able to derive the dynamic

Lagrange equations:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,5, L = T − V,

which can be represented in the standard matrix format

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) 0 D13 (q) D14 (q) D15 (q)

0 m3 + m4 + m5 0 D24 (q) D25 (q)

D31 (q) 0 D33 (q) 0 0

D41 (q) D42 (q) 0 D44 (q) D45 (q)

D51 (q) D52 (q) 0 D54 (q) m5d
2
5 + I5zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) =
[

3

2
(m1 + m2) + m3 + m4 + m5

]

,

D31 (q) = (m4d4 + m5l4) sinq3 sinq4 − m5d5 sinq3 sin (q4 + q5) ,

D41 (q) = (m4d4 + m5l4) cosq3 cosq4 − m5d5 cosq3 cos (q4 + q5) ,

D51 (q) = −m5d5 cosq3 cos (q4 + q5) ,

D42 (q) = − (m4d4 + m5l4) sinq4 + m5d5 sin (q4 + q5) ,

D52 (q) = m5d5 sin (q4 + q5) ,

D13 (q) = (m4d4 + m5l4) sinq3 sinq4 − m5d5 sinq3 sin (q4 + q5) ,

D33 (q) =
(

m5d
2
5 + I5yy

)

sin2 (q4 + q5)−
2m5l4d5 sinq4 sin (q4 + q5) + I3yy + I4xx cos2 q4+
(

m4d
2
4 + I4yy + m5l

2
4

)

sin2 q4 + I5xx cos2 (q4 + q5) ,

D14 (q) = (m4d4 + m5l4) cosq3 cosq4 − m5d5 cosq3 cos (q4 + q5) ,

D24 (q) = − (m4d4 + m5l4) sinq4 + m5d5 sin (q4 + q5) ,

D44 (q) = m4d
2
4 + I4zz + m5l

2
4 + m5d

2
5 + I5zz − 2m5l4d5 cosq5,

D54 (q) = m5d
2
5 + I5zz − m5l4d5 cosq5,

D15 (q) = −m5d5 cosq3 cos (q4 + q5) ,
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D25 (q) = m5d5 sin (q4 + q5) ,

D45 (q) = m5d
2
5 + I5zz − m5l4d5 cosq5,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

ff ric−1 0 C13 (q, q̇) C14 (q, q̇) C15 (q, q̇)

0 c 0 C24 (q, q̇) C25 (q, q̇)

C31 (q, q̇) 0 C33 (q, q̇) C34 (q, q̇) 0

0 C42 (q, q̇) C43 (q, q̇) ff ric−4 C45 (q, q̇)

0 0 C53 (q, q̇) − [m5l4d5 sinq5] q̇4 C55 (q, q̇)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

C31 (q, q̇) = −2 [m5d5 sinq3 cos (q4 + q5)] (q̇4 + q̇5) ,

C42 (q, q̇) = −2 [m5d5 cos (q4 + q5)] (q̇4 + q̇5) ,

C13 (q, q̇) = [(m4d4 + m5l4) cosq3 sinq4] q̇3−
[m5d5 cosq3 sin (q4 + q5)] q̇3,

C33 (q, q̇) = ff ric−3 − 2 [m5l4d5 cosq4 sin (q4 + q5)]q4+
2
[(

m4d
2
4 + I4yy + m5l

2
4 − I4xx

)

sinq4 cosq4

]

q̇4+
2
(

m5d
2
5 + I5yy − I5xx

)

sin (q4 + q5) cos (q4 + q5) (q̇4 + q̇5)−
2 [m5l4d5 sinq4 cos (q4 + q5)] (q̇4 + q̇5) ,

C43 (q, q̇) = −2 [(m4d4 + m5l4) sinq3 cosq4] q̇1+
2 [m5d5 sinq3 cos (q4 + q5)] q̇1−
[(

m4d
2
4 + I4yy − I4xx + m5l

2
4

)

sinq4 cosq4

]

q̇3−
(

m5d
2
5 + I5yy − I5xx

)

sin (q4 + q5) cos (q4 + q5) q̇3+
[m5l4d5 sin (2q4 + q5)] q̇3,

C53 (q, q̇) = 2 [m5d5 sinq3 cos (q4 + q5)] q̇1−
(

m5d
2
5 + I5yy − I5xx

)

sin (q4 + q5) cos (q4 + q5) q̇3+
[m5l4d5 sinq4 cos (q4 + q5)] q̇3,

C14 (q, q̇) = − [(m4d4 + m5l4) cosq3 sinq4] q̇4+
[m5d5 cosq3 sin (q4 + q5)] (q̇4 + q̇5) ,

C24 (q, q̇) = − [(m4d4 + m5l4) cosq4] q̇4 + [m5d5 cos (q4 + q5)] (q̇4 + q̇5) ,

C34 (q, q̇) = 2 [(m4d4 + m5l4) sinq3 cosq4] q̇1,

C15 (q, q̇) = [m5d5 cosq3 sin (q4 + q5)] (q̇4 + q̇5),

C25 (q, q̇) = [m5d5 cos (q4 + q5)] (q̇4 + q̇5) ,

C45 (q, q̇) = [m5l4d5 sinq5] (2q̇4 + q̇5) ,

C55 (q, q̇) = ff ric−5 + [m5l4d5 sinq5] q̇4,



434 Classical and Analytical Mechanics

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

[m1 + m2 + m3 + m4 + m5]g sinα

k (q2 − q20) + [m3 + m4 + m5]g cosα

− [(m5l4 − m4d4) sinq4 + m5d5 sin (q5 + q4)]g sinα sinq3

[m4d4 + m5l4]g sinq4 cosα + [m5l4 − m4d4]g sinα cosq3 cosq4

−m5g [d5 sin (q5 + q4) cosα − d5 cos (q5 + q4) sinα cosq3]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

F1
0
τ3
τ4
τ5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

12.14 Planar manipulator with two joints

In this section we will consider the two-joint planar manipulator represented in
Fig. 12.14.

Figure 12.14 Two-joint planar manipulator.

Generalized coordinates
Select the generalized coordinates as follows:

q1 := ϕ1, q2 := y, q3 := x, q4 := ϕ2.

Kinetic energy
The kinetic energy T =∑5

i=1 Tmi
has the terms

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)

= Tm1,rot−0 = 1

2
I1zzϕ̇

2
1 = 1

2
I1zzq̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,rot−0 =
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1

2

⎛

⎝

0
0
ϕ̇1

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I2xx 0 0
0 m2 (d2 + r1)

2 + I2yy 0
0 0 m2 (d2 + r1)

2 + I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
0
ϕ̇1

⎞

⎠

= 1

2

(

m2 (d2 + r1)
2 + I2zz

)

q̇2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)= Tm3,0 + Tm3,rot−0 =

1

2
m3

[

ẏ2 + ϕ̇2
1 (r1 + l2 + y)2

]

+

1

2

⎛

⎝

0
0
ϕ̇1

⎞

⎠

� ∥∥
∥
∥
∥
∥

I3xx 0 0
0 I3yy 0
0 0 I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
0
ϕ̇1

⎞

⎠

= 1

2

[

m3 (r1 + l2 + q2)
2 + I3zz

]

q̇2
1 + 1

2
m3q̇

2
2 ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

1

2
m4

[

ẏ2 + ϕ̇2
1 (r1 + l2 + y)2 + ẋ2

]

+

1

2

⎛

⎝

0
0
ϕ̇1

⎞

⎠

� ∥∥
∥
∥
∥
∥

I4xx 0 0
0 m4x

2 + I4yy 0
0 0 m4x

2 + I4zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
0
ϕ̇1

⎞

⎠+

m4

⎛

⎝

ẋ cosϕ1 − ϕ̇1x sinϕ1
ẋ sinϕ1 + ϕ̇1x cosϕ1

0

⎞

⎠

�⎛

⎝

−ẏ sinϕ1 − ϕ̇1 (r1 + l2 + y) cosϕ1
ẏ cosϕ1 − ϕ̇1 (r1 + l2 + y) sinϕ1

0

⎞

⎠

= 1

2

[

m4 (r1 + l2 + q2)
2 + m4q

2
3 + I4zz

]

q̇2
1+

1

2
m4

(

q̇2
2 + q̇2

3

)

+ [m4q3] q̇1q̇2 − [m4 (r1 + l2 + q2)] q̇1q̇3,

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)=

1

2
m5

[

ẏ2 + ϕ̇2
1 (r1 + l2 + y)2 + ẋ2

]

+

1

2

⎛

⎝

ϕ̇2
0
ϕ̇1

⎞

⎠

�∥∥
∥
∥
∥
∥

I5xx 0 0
0 m5 (x + d4 + d5)

2 + I5yy 0
0 0 m5 (x + d4 + d5)

2 + I5zz

∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇2
0
ϕ̇1

⎞

⎠

+m5

⎛

⎝

ẋ cosϕ1 − ϕ̇1 (x + d4 + d5) sinϕ1
ẋ sinϕ1 + ϕ̇1 (x + d4 + d5) cosϕ1

0

⎞

⎠

�
×

⎛

⎝

−ẏ sinϕ1 − ϕ̇1 (r1 + l2 + y) cosϕ1
ẏ cosϕ1 − ϕ̇1 (r1 + l2 + y) sinϕ1

0

⎞

⎠

= 1

2

[

m5 (r1 + l2 + q2)
2 + m5 (q3 + d4 + d5)

2 + I5zz

]

q̇2
1 + 1

2
[m5] q̇2

2+



436 Classical and Analytical Mechanics

1

2
m5q̇

2
3 + [m5 (q3 + d4 + d5)] q̇1q̇2 − [m5 (r1 + l2 + q2)] q̇1q̇3 + 1

2
[I5xx] q̇2

4 .

Potential energy
The potential energy V =∑5

i=1 Vmi
contains

Vm1 = const,

Vm2 = m2g (r1 + d2) cosϕ1 = m2g (r1 + d2) cosq1,

Vm3 = m3g (r1 + d2 + y) cosϕ1 = m3g (r1 + d2 + q2) cosq1,

Vm4 = m4g [x sinϕ1 + (r1 + l2 + y) cosϕ1] =
m4g [q3 sinq1 + (r1 + l2 + q2) cosq1] ,

Vm5 = m5g [(x + d4 + d5) sinϕ1 + (r1 + l2 + y) cosϕ1] =
m5g [(q3 + d4 + d5) sinq1 + (r1 + l2 + q2) cosq1] ,

which gives

V = m2g (r1 + d2) cosq1 + m3g (r1 + l2 + q2) cosq1+
m4g [q3 sinq1 + (r1 + l2 + q2) cosq1]+
m5g [(q3 + d4 + d5) sinq1 + (r1 + l2 + q2) cosq1] + const.

Non-potential forces
The generalized non-potential forces are given by the following formulas:

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a twisting moment,

Qnon-pot,2 = F2 − ff ric−2ẏ = F2 − ff ric−2q̇2,

F2 is a force of longitudinal movement,

Qnon-pot,3 = F3 − ff ric−3ẋ3 = F3 − ff ric−3q̇3,

F3 is a force of transverse movement,

Qnon-pot,4 = τ4 − ff ric−4ϕ̇2 = τ4 − ff ric−4q̇4,

τ4 is a twisting moment.

Lagrange equations
Using the obtained expression for T and V , we are able to derive the Lagrange

equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,4, L = T − V,

which may be represented in the standard matrix format:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,
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where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

D11 (q)
m4q3
+m5 (q3 + d4 + d5)

−m4 (r1 + l2 + q2)

−m5 (r1 + l2 + q2)
0

D21 (q) m3 + m4 + m5 0 0
D31 (q) 0 m4 + m5 0

0 0 0 I5xx

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = I1zz + I2zz + I3zz + m2 (d2 + r1)
2 + m3 (r1 + l2 + q2)

2 +
m4 (r1 + l2 + q2)

2 + m4q
2
3 + I4zz + I5zz+

m5 (r1 + l2 + q2)
2 + m5 (q3 + d4 + d5)

2 ,

D21 (q) = m4q3 + m5 (q3 + d4 + d5) ,

D31 (q) = −m4 (r1 + l2 + q2) − m5 (r1 + l2 + q2) ,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) 0 C13 (q, q̇) 0
C21 (q, q̇) ff ric−2 0 0
C31 (q, q̇) 0 ff ric−3 0

0 0 0 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥

,

C11 (q, q̇) = ff ric−1 + +2 (m3 + m4 + m5) (r1 + l2 + q2) q̇2,

C21 (q, q̇) = − [(m3 + m4 + m5) (r1 + l2 + q2)] q̇1 + 2 [m4 + m5] q̇3,

C31 (q, q̇) = −m4q3q̇1 − m5 (q3 + d4 + d5) − 2 [m4 + m5] q̇2,

C13 (q, q̇) = 2m4q3q̇1 + 2m5 (q3 + d4 + d5) q̇1,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

g1 (q)

[m3 + m4 + m5]g cosq1
[m4 + m5]g sinq1

0

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

τ1
F2
F3
τ4

∥
∥
∥
∥
∥
∥
∥
∥

,

g1 (q) = −m2g (r1 + d2) sinq1 − m3g (r1 + l2 + q2) sinq1+
m4g [q3 cosq1 − (r1 + l2 + q2) sinq1]+
m5g [(q3 + d4 + d5) cosq1 − (r1 + l2 + q2) sinq1] .

12.15 Double “crank-turn” swivel manipulator

Consider a double “crank-turn” swivel manipulator, represented in Fig. 12.15.

Generalized coordinates
The generalized coordinates are

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := x.
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Figure 12.15 “Crank-turn” robot manipulator.

Kinetic energy
The kinetic energy T =∑5

i=1 Tmi
contains

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)= 1

2
I1yyϕ̇1 = 1

2
I1yy q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm1−c.i.−0,v0
)= Tm2,rot−0 =

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥∥
∥
∥
∥
∥

I2xx 0 0
0 m2d

2
2 + I2yy 0

0 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠=

1

2

[

m2d
2
2 + I2yy

]

q̇2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)=

Tm3,0 + Tm3,rot−0 = 1

2
m3l

2
2 ϕ̇2

1+

1

2

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 I3yy 0
0 0 I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠=

1

2
m3l

2
2 q̇2

1 + 1

2
I3yy (q̇1 + q̇2)

2 ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 1

2
m4l

2
2 ϕ̇2

1+

1

2

⎛

⎝

− (ϕ̇1 + ϕ̇2) cosϕ3
(ϕ̇1 + ϕ̇2) sinϕ3

ϕ̇3

⎞

⎠

�
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I4xx 0 0

0
m4d

2
4+I4yy

0

0 0
m4d

2
4+I4zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎝

− (ϕ̇1 + ϕ̇2) cosϕ3
(ϕ̇1 + ϕ̇2) sinϕ3

ϕ̇3

⎞

⎠
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+m4

⎛

⎜
⎜
⎜
⎜
⎝

(ϕ̇1 + ϕ̇2) d4 sinϕ3 sin (ϕ1 + ϕ2)

+ϕ̇3d4 cosϕ3 cos (ϕ1 + ϕ2)

−ϕ̇3d4 sinϕ3
(ϕ̇1 + ϕ̇2) d4 sinϕ3 cos (ϕ1 + ϕ2)

−ϕ̇3d4 cosϕ3 sin (ϕ1 + ϕ2)

⎞

⎟
⎟
⎟
⎟
⎠

�
⎛

⎝

−ϕ̇1l2 sinϕ1
0

−ϕ̇1l2 cosϕ1

⎞

⎠=

1

2

[

m4l
2
2

]

q̇2
1 + 1

2

[

m4d
2
4 + I4zz

]

q̇2
3 + [m4l2d4 sinq2 cosq3] q̇1q̇3+

1

2

[(

m4d
2
4 + I4yy

)

sin2 q3 + I4xx cos2 q3

]

(q̇1 + q̇2)
2 −

m4 [l2d4 cosq2 sinq3] (q̇1 + q̇2) q̇1,

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)= Tm5,0 + Tm5,rot−0 =

1

2
m5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎝

(ϕ̇1 + ϕ̇2) (l4 + x) sinϕ3 sin (ϕ1 + ϕ2) − ϕ̇1l2 sinϕ1
+ϕ̇3 (l4 + x) cosϕ3 cos (ϕ1 + ϕ2) − ẋ sinϕ3 cos (ϕ1 + ϕ2)

−ϕ̇3 (l4 + x) sinϕ3 − ẋ cosϕ3
(ϕ̇1 + ϕ̇2) (l4 + x) sinϕ3 cos (ϕ1 + ϕ2) − ϕ̇1l2 cosϕ1
−ϕ̇3 (l4 + x) cosϕ3 sin (ϕ1 + ϕ2) + ẋ sinϕ3 sin (ϕ1 + ϕ2)

⎞

⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+

1

2

⎛

⎝

− (ϕ̇1 + ϕ̇2) cosϕ3
(ϕ̇1 + ϕ̇2) sinϕ3

ϕ̇3

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I5xx 0 0
0 I5yy 0
0 0 I5zz

∥
∥
∥
∥
∥
∥

⎛

⎝

− (ϕ̇1 + ϕ̇2) cosϕ3
(ϕ̇1 + ϕ̇2) sinϕ3

ϕ̇3

⎞

⎠=

1

2
m5l

2
2 q̇1 + 1

2

[

I5zz + m5 (l4 + q4)
2
]

q̇2
3 + 1

2
m5q̇

2
4+

1

2

[

I5xx cos2 q3 +
(

I5yy + m5 (l4 + q4)
2
)

sin2 q3

]

(q̇1 + q̇2)
2 +

[(l4 + q4) l2 sinq2 cosq3] q̇1q̇3 − m5 [l2 sinq3 sinq2] q̇1q̇4−
m5 [(l4 + q4) l2 cosq2 sinq3] q̇1 (q̇1 + q̇2) .

Potential energy
The potential energy V =∑5

i=1 Vmi
contains

Vm1 = const, Vm2 = const, Vm3 = const,

Vm4 = −m4g (d4 cosϕ3 + const) = −m4g (d4 cosq3 + const) ,

Vm5 = −m4g ((l4 + x) cosϕ3 + const) = −m4g ((l4 + q4) cosq3 + const) ,

which gives

V = −m4g [(d4 + l4) cosq3 + q4] cosq3 + const.

Non-potential forces
The generalized non-potential forces are as follows:

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a twisting moment,
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Qnon-pot,2 = τ2 − ff ric−2ϕ̇2 = τ2 − ff ric−2q̇2,

τ2 is a twisting moment,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇3 = τ3 − ff ric−3q̇3,

τ3 is a twisting moment,

Qnon-pot,4 = F4 − ff ric−4ẋ = F4 − ff ric−4q̇4,

F4 is a force of longitudinal movement.

Lagrange equations
The obtained formulas for T and V allow to derive the Lagrange dynamic equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,4, L = T − V,

which can be represented in the following standard matrix format:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) D12 (q) D13 (q) −m5l2 sinq2 sinq3
D21 (q) D22 (q) 0 0
D31 (q) 0 D33 (q) 0

−m5l2 sinq2 sinq3 0 0 m5

∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = I1yy + m2d
2
2 + I2yy + I3yy + (m3 + m4 + m5) l2

2+
(

m4d
2
4 + I4yy + I5yy + m5 (l4 + q4)

2
)

sin2 q3 + (I4xx + I5xx) cos2 q3−
2l2 (m4d4 + m5 (l4 + q4)) cosq2 sinq3,

D21 (q) = I3yy − l2 (m4d4 + m5 (l4 + q4)) cosq2 sinq3+
(

m4d
2
4 + I4yy + I5yy + m5 (l4 + q4)

2
)

sin2 q3 + (I4xx + I5xx) cos2 q3,

D31 (q) = l2 (m4d4 + m5 (l4 + q4)) sinq2 cosq3,

D12 (q) = I3yy − l2 (m4d4 + m5 (l4 + q4)) cosq2 sinq3+
(

m4d
2
4 + I4yy + I5yy + m5 (l4 + q4)

2
)

sin2 q3 + (I4xx + I5xx) cos2 q3,

D22 (q) = +I3yy + (I4xx + I5xx) cos2 q3+
(

m4d
2
4 + I4yy + I5yy + m5 (l4 + q4)

2
)

sin2 q3,

D13 (q) = l2 (m4d4 + m5 (l4 + q4)) sinq2 cosq3,

D33 (q) = +m4d
2
4 + I4zz + I5zz + m5 (l4 + q4)

2 ,
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and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) C12 (q, q̇) C13 (q, q̇) C14 (q, q̇)

C21 (q, q̇) C22 (q, q̇) C23 (q, q̇) C24 (q, q̇)

C31 (q, q̇) C32 (q, q̇) C33 (q, q̇) 0
C41 (q, q̇) C42 (q, q̇) C43 (q, q̇) ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥

,

C11 (q, q̇) = ff ric−1 − 2l2 (m4d4 + m5 (l4 + q4)) q̇3 cosq2 cosq3,

C21 (q, q̇) = −2l2 (m4d4 + m5 (l4 + q4)) q̇3 cosq2 cosq3−
l2 (m4d4 + m5 (l4 + q4)) sinq2 sinq3 (q̇1 + q̇2) ,

C31 (q, q̇) = 2l2 (m4d4 + m5 (l4 + q4)) cosq2 cosq3q̇2+
2l2m5 sinq2 cosq3q̇4 + l2 (m4d4 + m5 (l4 + q4) l2) q̇1 cosq2 cosq3−
(

I5yy + m5 (l4 + q4)
2 − I5xx + m4d

2
4 + I4yy − I4xx

)

(q̇1 + q̇2) sinq3 cosq3,

C41 (q, q̇) = [m5l2 cosq2 sinq3] q̇1 −
[

m5 (l4 + q4) sin2 q3

]

(q̇1 + q̇2) ,

C12 (q, q̇) = l2 (m4d4 + m5 (l4 + q4)) (2q̇1 + q̇2) sinq2 sinq3,

C22 (q, q̇) = ff ric−2 + l2 (m4d4 + m5 (l4 + q4)) q̇2 sinq2 sinq3,

C32 (q, q̇) = −
(

I5yy + m5 (l4 + q4)
2 − I5xx + m4d

2
4 + I4yy − I4xx

)

×
(q̇2 + q̇1) sinq3 cosq3,

C42 (q, q̇) = −
[

m5 (l4 + q4) sin2 q3

]

(q̇1 + q̇2) ,

C13 (q, q̇) = −l2 (m4d4 + m5 (l4 + q4)) sinq2 sinq3q̇3+
2
(

m4d
2
4 + I4yy + I5yy + m5 (l4 + q4)

2 − I4xx − I5xx

)

(q̇1+q̇2) sinq3 cosq3,

C23 (q, q̇) = 2
(

m4d
2
4 + I4yy + I5yy + m5 (l4 + q4)

2 − I4xx − I5xx

)

×
(q̇1 + q̇2) sinq3 cosq3,

C33 (q, q̇) = ff ric−3 + 2m5 (l4 + q4) q̇4,

C43 (q, q̇) = −2m5l2 sinq2 cosq3q̇1 − [m5 (l4 + q4)] q̇3,

C14 (q, q̇) = 2 (m5 (l4 + q4)) sin2 q3 (q̇1 + q̇2) q̇4−
2l2m5 [cosq2 sinq3] (q̇1 + q̇2) ,

C24 (q, q̇) = 2m5 (l4 + q4) sin2 q3 (q̇1 + q̇2) ,

with

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
0

m4gd4 sinq3 + m4g (l4 + q4) sinq3
−m4g cosq3

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2
τ3
F4

∥
∥
∥
∥
∥
∥
∥
∥

.
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12.16 Robot manipulator of multicylinder type

Let us consider a robot manipulator of multicylinder type, depicted in Fig. 12.16.

Figure 12.16 Robot manipulator of multicylinder type.

Generalized coordinates
The generalized coordinates are

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4.

Kinetic energy
The kinetic energy T =∑4

i=1 Tmi
contains the terms

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,rot−0 = 1

2
I1yyϕ̇

2
1 = 1

2
I1yy q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,rot−0 =

1

2

⎛

⎝

ϕ̇2
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I2xx 0 0
0 I2yy 0
0 0 I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇2
ϕ̇1
0

⎞

⎠= 1

2
I2yy q̇

2
1 + 1

2
I2xx q̇

2
2 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)=

1

2
m3

∥
∥
∥
∥
∥
∥

⎛

⎝

−ϕ̇2a cosϕ1 sinϕ2 − ϕ̇1a sinϕ1 cosϕ2
ϕ̇2a cosϕ2

−ϕ̇1a cosϕ1 cosϕ2 + ϕ̇2a sinϕ1 sinϕ2

⎞

⎠

∥
∥
∥
∥
∥
∥

2

+

1

2

⎛

⎝

ϕ̇2 + ϕ̇3
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 I3yy 0
0 0 I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇2 + ϕ̇3
ϕ̇1
0

⎞

⎠=

1

2
m3

[

a2 cos2 q2q̇
2
1 + a2q̇2

2

]

+ 1

2

[

I3yy q̇
2
1 + I3xx (q̇2 + q̇3)

2
]

,
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Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

1

2
m4

[

a2 cos2 ϕ2ϕ̇
2
1 + a2ϕ̇2

2

]

+ 1

2
w�

4

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I4xx 0 0

0
m4b

2

+I4yy
0

0 0
m4b

2

+I4zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

w4+

m4

⎛

⎜
⎜
⎜
⎜
⎝

ϕ̇1b sinϕ1 cos (ϕ2 + ϕ3)+
(ϕ̇2 + ϕ̇3) b cosϕ1 sin (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) b cos (ϕ2 + ϕ3)

ϕ̇1b cosϕ1 cos (ϕ2 + ϕ3)−
(ϕ̇2 + ϕ̇3) b sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎟
⎟
⎟
⎟
⎠

�⎛
⎜
⎜
⎜
⎜
⎝

−ϕ̇2a cosϕ1 sinϕ2−
ϕ̇1a sinϕ1 cosϕ2

ϕ̇2a cosϕ2
−ϕ̇1a cosϕ1 cosϕ2+
ϕ̇2a sinϕ1 sinϕ2

⎞

⎟
⎟
⎟
⎟
⎠

=

1

2

[

I4xx sin2 (q2 + q3) +
(

m4b
2 + I4yy

)

cos2 (q2 + q3)
]

q̇2
1+

1

2
m4a

2q̇2
2 + 1

2
m4

[

a2 cos2 q2 − 2ab cosq2 cos (q2 + q3)
]

q̇2
1+

1

2
I4xx

[

2 sin (q2 + q3) q̇1q̇4 + q̇2
4

]

+
1

2

[(

m4b
2 + I4zz

)]

(q̇2 + q̇3)
2 − [m4ab cosq3] (q̇2 + q̇3) q̇2,

where

w4 :=
⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3) + ϕ̇4
ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎠ .

Potential energy
The potential energy V =∑4

i=1 Vmi
is given by

Vm1 = const, Vm2 = const,

Vm3 = m3g (a sinϕ2 + const) = m3g (a sinq2 + const) ,

Vm4 = m4g (−b sin (ϕ2 + ϕ3) + a sinϕ2 + const) =
m4g (−b sin (q2 + q3) + a sinq2 + const) ,

which implies

V = m3ga sinq2 + m4g [a sinq2 − b sin (q2 + q3)] + const.

Non-potential forces
The generalized non-potential forces are

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

τi is a twisting moment, i = 1, ...,4.
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Lagrange equations
Based on the obtained equations for T and V , we are able to represent the dynamic

model of the considered system in the Lagrangian form:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,4, L = T − V,

which in the standard matrix format represents the dynamic model of the considered
system:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) 0 0 I4xx sin (q2 + q3)

0 D22 (q) D23 (q) 0
0 D32 (q) D33 (q) 0

I4xx sin (q2 + q3) 0 0 I4xx

∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = I1yy + I2yy + I3yy + m3a
2 cos2 q2+

I4xx sin2 (q2 + q3) +
(

m4b
2 + I4yy

)

cos2 (q2 + q3)+
m4a

2 cos2 q2 − m42ab cosq2 cos (q2 + q3) ,

D22 (q) = I2xx + (m3 + m4) a2+
2
[

I3xx + m4b
2 + I4zz

]

− 2m4ab cosq3,

D32 (q) = I3xx + m4b
2 + I4zz − m4ab cosq3,

D23 (q) = +I3xx + m4b
2 + I4zz − m4ab cosq3,

D33 (q) = I3xx + m4b
2 + I4zz,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) 0 0 C14 (q, q̇)

C21 (q, q̇) ff ric−2 C23 (q, q̇) −I4xx cos (q2 + q3) q̇1
C31 (q, q̇) C32 (q, q̇) ff ric−3 −I4xx cos (q2 + q3) q̇1
C41 (q, q̇) 0 0 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥

,

C11 (q, q̇) = ff ric−1 − 2
(

m3a
2 + m4a

2
)

sinq2 cosq2q̇2+
2m4ab sinq2 cos (2q2 + q3) q̇2 + 2m4ab cosq2 sin (q2 + q3) q̇3+
2
(

I4xx − m4b
2 − I4yy

)

sin (q2 + q3) cos (q2 + q3) (q̇2 + q̇3) ,

C21 (q, q̇) =
(

m3a
2 + a2m4

)

sinq2 cosq2q̇1 − m4ab sin (2q2 + q3) q̇1

−
(

I4xx − m4b
2 − I4yy

)

sin (q2 + q3) cos (q2 + q3) q̇1,

C31 (q, q̇) = −
(

I4xx − m4b
2 − I4yy

)

q̇1 sin (q2 + q3) cos (q2 + q3)
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−m4ab cosq2 sin (q2 + q3) q̇1,

C41 (q, q̇) = I4xx cos (q2 + q3) (q̇2 + q̇3) ,

C32 (q, q̇) = −m4ab sinq3q̇2,

C23 (q, q̇) = m4ab sinq3 (2q̇2 + q̇3) ,

C14 (q, q̇) = I4xx cos (q2 + q3) (q̇2 + q̇3) ,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
m3ga cosq2 + m4g (a cosq2 − b cos (q2 + q3))

−m4gb cos (q2 + q3)

0

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2
τ3
τ4

∥
∥
∥
∥
∥
∥
∥
∥

.

12.17 Arm manipulator with springs

Consider an arm manipulator with springs, as depicted in Fig. 12.17.

Figure 12.17 Arm manipulator with springs.

Generalized coordinates
The generalized coordinates are

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4, q5 := ϕ5

(in Fig. 12.17, θi = ϕi (i = 1, ...,4)).

Kinetic energy
The kinetic energy T =∑4

i=0 Tmi
is calculated as

Tm0 = Tm0,0 + Tm0,rot−0 + m0
(

vm0−c.i.−0,v0
)

= Tm0,rot−0 = 1

2

m0r0

2
ϕ̇2

1 = 1

4
m0r0q̇

2
1 ,
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Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)= Tm1,rot−0 =

1

2

⎛

⎝

ϕ̇1 sinϕ2
ϕ̇1 cosϕ2

ϕ̇2

⎞

⎠

�
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I1xx 0 0

0 m1

(
l

2

)2

+ I1yy 0

0 0 m1

(
l

2

)2

+ I1zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇1 sinϕ2
ϕ̇1 cosϕ2

ϕ̇2

⎞

⎠

= 1

2

[

I1xx sin2 q2 +
(

m1
l2

4
+ I1yy

)

cos2 q2

]

q̇2
1 + 1

2

[

m1
l2

4
+ I1zz

]

q̇2
2 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm1−c.i.−0,v0
)=

1

2
m2

∥
∥
∥
∥
∥
∥

⎛

⎝

−ϕ̇1l sinϕ1 cosϕ2 − ϕ̇2l cosϕ1 sinϕ2
ϕ̇2l cosϕ2

−ϕ̇1l cosϕ1 cosϕ2 + ϕ̇2l sinϕ1 sinϕ2

⎞

⎠

∥
∥
∥
∥
∥
∥

2

+

1

2
w�

2

∥
∥
∥
∥
∥
∥
∥
∥
∥

I2xx 0 0

0 m2
l2

4
+ I2yy 0

0 0 m2
l2

4
+ I2zz

∥
∥
∥
∥
∥
∥
∥
∥
∥

w2+

m2

⎛

⎜
⎜
⎜
⎜
⎝

ϕ̇1
l

2
sinϕ1 cos (ϕ2 + ϕ3) + (ϕ̇2 + ϕ̇3)

l

2
cosϕ1 sin (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3)
l

2
cos (ϕ2 + ϕ3)

ϕ̇1
l

2
cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3)

l

2
sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎟
⎟
⎟
⎟
⎠

�

×

⎛

⎝

−ϕ̇1l sinϕ1 cosϕ2 − ϕ̇2l cosϕ1 sinϕ2
ϕ̇2l cosϕ2

−ϕ̇1l cosϕ1 cosϕ2 + ϕ̇2l sinϕ1 sinϕ2

⎞

⎠=

1

2

[

m2l
2 cos2 q2 + I2xx sin2 (q2 + q3) +

(

m2
l2

4
+ I2yy

)

cos2 (q2 + q3)

]

q̇2
1−

1

2

[

m2l
2 cosq2 cos (q2 + q3)

]

q̇2
1 + 1

2

[

m2l
2
]

q̇2
2+

1

2

[

m2
l2

4
+ I2zz

]

(q̇2 + q̇3)
2 −

1

2

[

m2l
2 cosq3

]

(q̇2 + q̇3) q̇2,

where

w2 :=
⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3)

ϕ̇1 cos (ϕ2 + ϕ3)

ϕ̇2 + ϕ̇3

⎞

⎠ ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)=
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1

2
m3

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎝

−ϕ̇1l sinϕ1 cosϕ2 − ϕ̇2l cosϕ1 sinϕ2
+ϕ̇1l sinϕ1 cos (ϕ2 + ϕ3) + (ϕ̇2 + ϕ̇3) l cosϕ1 sin (ϕ2 + ϕ3)

ϕ̇2l cosϕ2 − (ϕ̇2 + ϕ̇3) l cos (ϕ2 + ϕ3)

−ϕ̇1l cosϕ1 cosϕ2 + ϕ̇2l sinϕ1 sinϕ2
+ϕ̇1l cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3) l sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+

1

2
w�

3

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I3xx 0 0

0 m3

(
l

2

)2

+ I3yy 0

0 0 m3

(
l

2

)2

+ I3zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

w3+

m3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ϕ̇1
l

2
sinϕ1 cos (ϕ2 + ϕ3 + ϕ4)

− (ϕ̇2 + ϕ̇3 + ϕ̇4)
l

2
cosϕ1 sin (ϕ2 + ϕ3 + ϕ4)

(ϕ̇2 + ϕ̇3 + ϕ̇4)
l

2
cos (ϕ2 + ϕ3 + ϕ4)

−ϕ̇1
l

2
cosϕ1 cos (ϕ2 + ϕ3 + ϕ4)

+ (ϕ̇2 + ϕ̇3 + ϕ̇4)
l

2
sinϕ1 sin (ϕ2 + ϕ3 + ϕ4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ϕ̇1l sinϕ1 cosϕ2 − ϕ̇2l cosϕ1 sinϕ2
+ϕ̇1l sinϕ1 cos (ϕ2 + ϕ3)

+ (ϕ̇2 + ϕ̇3) l cosϕ1 sin (ϕ2 + ϕ3)

ϕ̇2l cosϕ2 − (ϕ̇2 + ϕ̇3) l cos (ϕ2 + ϕ3)

−ϕ̇1l cosϕ1 cosϕ2 + ϕ̇2l sinϕ1 sinϕ2
+ϕ̇1l cosϕ1 cos (ϕ2 + ϕ3)

− (ϕ̇2 + ϕ̇3) l sinϕ1 sin (ϕ2 + ϕ3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

1

2
m3l

2 [(cosq2 − cos (q2 + q3)) cos (q2 + q3 + q4)−
2 cosq2 cos (q2 + q3)] q̇

2
1+

1

2

[

m3l
2
(

cos2 q2 + cos2 (q2 + q3)
)]

q̇2
1+

1

2

[

I3xx sin2 (q2 + q3 + q4) +
(

m3
l2

4
+ I3yy

)

cos2 (q2 + q3 + q4)

]

q̇2
1+

1

2

[

m3l
2
]

q̇2
2 + 1

2

[

m3l
2
]

(q̇2 + q̇3)
2 + 1

2

[

m3
l2

4
+ I3zz

]

(q̇2 + q̇3 + q̇4)
2 −

[

m3l
2 cosq3

]

(q̇2 + q̇3) q̇2 + 1

2
m3

[

l2 cos (q3 + q4)
]

(q̇2 + q̇3 + q̇4) q̇2−
1

2
m3

[

l2 cosq4

]

(q̇2 + q̇3 + q̇4) (q̇2 + q̇3) ,
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with

w3 :=
⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3 + ϕ4)

ϕ̇1 cos (ϕ2 + ϕ3 + ϕ4)

ϕ̇2 + ϕ̇3 + ϕ̇4

⎞

⎠ ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= 1

2
m4

∥
∥
∥
∥
∥
∥

⎛

⎝

a1
a2
a3

⎞

⎠

∥
∥
∥
∥
∥
∥

2

+

1

2
w�

4

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

I4xx 0 0

0 m4

(
l

2

)2

+ I4yy 0

0 0 m4

(
l

2

)2

+ I4zz

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

w4+

m4

⎛

⎝

s1
s2
s3

⎞

⎠

�⎛

⎝

s4
s5
s6

⎞

⎠=

−m4l
2
[

cosq2 cos (q2 + q3 + q4 + q5)−
cos (q2 + q3) cos (q2 + q3 + q4 + q5)

]
q̇2

1

2
−

m4l
2 [cos (q2 + q3 + q4) cos (q2 + q3 + q4 + q5)]

q̇2
1

2
+

m4l
2
[

cos2 q2 + cos2 (q2 + q3)
] q̇2

1

2
+

⎡

⎣

I4xx sin2 (q2 + q3 + q4 + q5)

+
(

m4
l2

4
+ I4yy

)

cos2 (q2 + q3 + q4 + q5)

⎤

⎦
q̇2

1

2
+

m4l
2 [cosq2 (cos (q2 + q3 + q4) − cos (q2 + q3))] q̇

2
1−

m4l
2 [cos (q2 + q3) cos (q2 + q3 + q4)] q̇

2
1+

1

2

[

m4l
2 cos2 (q2 + q3 + q4)

]

q̇2
1 + 1

2

[

m4l
2
]

q̇2
2 + 1

2

[

m4l
2
]

(q̇2 + q̇3)
2 +

1

2

[

m4l
2
]

(q̇2 + q̇3 + q̇4)
2 + 1

2

[

m4
l2

4
+ I4zz

]

(q̇2 + q̇3 + q̇4 + q̇5)
2 −

[

m4l
2 cosq3

]

(q̇2 + q̇3) q̇2 + m4

[

l2 cos (q3 + q4)
]

(q̇2 + q̇3 + q̇4) q̇2−

m4
1

2

[

l2 cos (q3 + q4 + q5)
]

(q̇2 + q̇3 + q̇4 + q̇5) q̇2+

m4
1

2

[

l2 cos (q4 + q5)
]

(q̇2 + q̇3 + q̇4 + q̇5) (q̇2 + q̇3)−

m4
1

2

[

l2 cosq5

]

(q̇2 + q̇3 + q̇4 + q̇5) (q̇2 + q̇3 + q̇4)−
m4

[

l2 cosq4

]

(q̇2 + q̇3 + q̇4) (q̇2 + q̇3) ,
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where

a1 = −ϕ̇1l sinϕ1 cosϕ2 − ϕ̇2l cosϕ1 sinϕ2+
ϕ̇1l sinϕ1 cos (ϕ2 + ϕ3) + (ϕ̇2 + ϕ̇3) l cosϕ1 sin (ϕ2 + ϕ3)−
ϕ̇1l sinϕ1 cos (ϕ2 + ϕ3 + ϕ4)−
(ϕ̇2 + ϕ̇3 + ϕ̇4) l cosϕ1 sin (ϕ2 + ϕ3 + ϕ4) ,

a2 = ϕ̇2l cosϕ2 − (ϕ̇2 + ϕ̇3) l cos (ϕ2 + ϕ3)+
(ϕ̇2 + ϕ̇3 + ϕ̇4) l cos (ϕ2 + ϕ3 + ϕ4) ,

a3 = −ϕ̇1l cosϕ1 cosϕ2 + ϕ̇2l sinϕ1 sinϕ2+
ϕ̇1l cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3) l sinϕ1 sin (ϕ2 + ϕ3)−
ϕ̇1l cosϕ1 cos (ϕ2 + ϕ3 + ϕ4)+
(ϕ̇2 + ϕ̇3 + ϕ̇4) l sinϕ1 sin (ϕ2 + ϕ3 + ϕ4) ,

w4 :=
⎛

⎝

ϕ̇1 sin (ϕ2 + ϕ3 + ϕ4 + ϕ5)

ϕ̇1 cos (ϕ2 + ϕ3 + ϕ4 + ϕ5)

ϕ̇2 + ϕ̇3 + ϕ̇4 + ϕ̇5

⎞

⎠ ,

s1 = ϕ̇1
l

2
sinϕ1 cos (ϕ2 + ϕ3 + ϕ4 + ϕ5)+

(ϕ̇2 + ϕ̇3 + ϕ̇4 + ϕ̇5)
l

2
cosϕ1 sin (ϕ2 + ϕ3 + ϕ4 + ϕ5) ,

s2 = − (ϕ̇2 + ϕ̇3 + ϕ̇4 + ϕ̇5)
l

2
cos (ϕ2 + ϕ3 + ϕ4 + ϕ5) ,

s3 = ϕ̇1
l

2
cosϕ1 cos (ϕ2 + ϕ3 + ϕ4 + ϕ5)

− (ϕ̇2 + ϕ̇3 + ϕ̇4 + ϕ̇5)
l

2
sinϕ1 sin (ϕ2 + ϕ3 + ϕ4 + ϕ5) ,

s4 = −ϕ̇1l sinϕ1 cosϕ2 − ϕ̇2l cosϕ1 sinϕ2 + ϕ̇1l sinϕ1 cos (ϕ2 + ϕ3)+
(ϕ̇2 + ϕ̇3) l cosϕ1 sin (ϕ2 + ϕ3) − ϕ̇1l sinϕ1 cos (ϕ2 + ϕ3 + ϕ4)−
(ϕ̇2 + ϕ̇3 + ϕ̇4) l cosϕ1 sin (ϕ2 + ϕ3 + ϕ4) ,

s5 = ϕ̇2l cosϕ2 − (ϕ̇2 + ϕ̇3) l cos (ϕ2 + ϕ3)+
(ϕ̇2 + ϕ̇3 + ϕ̇4) l cos (ϕ2 + ϕ3 + ϕ4) ,

s6 = −ϕ̇1l cosϕ1 cosϕ2 + ϕ̇2l sinϕ1 sinϕ2+
ϕ̇1l cosϕ1 cos (ϕ2 + ϕ3) − (ϕ̇2 + ϕ̇3) l sinϕ1 sin (ϕ2 + ϕ3)−
ϕ̇1l cosϕ1 cos (ϕ2 + ϕ3 + ϕ4)+
(ϕ̇2 + ϕ̇3 + ϕ̇4) l sinϕ1 sin (ϕ2 + ϕ3 + ϕ4) .

Potential energy
The potential energy V is

V =
8
∑

i=1

Vri +
4
∑

i=0

Vmi
,
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Vr1 = 1

2
c1

[(

2r2
1 (1 − sinϕ2) + l2

2
(1 + sinϕ2) + 2r1l cosϕ2

)1/2

− l

]2

= 1

2
c1

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) + 2r1l cosq2

)1/2

− l

]2

,

Vr2 = 1

2
c1

[(

2r2
1 (1 − sinϕ2) + l2

2
(1 + sinϕ2) − 2r1l cosϕ2

)1/2

− l

]

= 1

2
c1

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) − 2r1l cosq2

)1/2

− l

]2

,

Vr3 = 1

2
c2

[(

2r2
2 (1 − cosϕ3) + l2

2
(1 + cosϕ3) + 2r2l sinϕ3

)1/2

− l

]2

= 1

2
c2

[(

2r2
2 (1 − cosq3) + l2

2
(1 + cosq3) + 2r2l sinq3

)1/2

− l

]2

,

Vr4 = 1

2
c2

[(

2r2
2 (1 − cosϕ3) + l2

2
(1 + cosϕ3) − 2r2l sinϕ3

)1/2

− l

]2

= 1

2
c2

[(

2r2
2 (1 − cosq3) + l2

2
(1 + cosq3) − 2r2l sinq3

)1/2

− l

]2

,

Vr5 = 1

2
c3

[(

2r2
3 (1 − cosϕ4) + l2

2
(1 + cosϕ4) + 2r3l sinϕ4

)1/2

− l

]2

= 1

2
c3

[(

2r2
3 (1 − cosq4) + l2

2
(1 + cosq4) + 2r3l sinq4

)1/2

− l

]2

,

Vr6 = 1

2
c3

[(

2r2
3 (1 − cosϕ4) + l2

2
(1 + cosϕ4) − 2r3l sinϕ4

)1/2

− l

]2

= 1

2
c3

[(

2r2
3 (1 − cosq4) + l2

2
(1 + cosq4) − 2r3l sinq4

)1/2

− l

]2

,

Vr7 = 1

2
c4

[(

2r2
4 (1 − cosϕ5) + l2

2
(1 + cosϕ5) + 2r4l sinϕ5

)1/2

− l

]2

= 1

2
c4

[(

2r2
4 (1 − cosq5) + l2

2
(1 + cosq5) + 2r4l sinq5

)1/2

− l

]2

,
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Vr8 = 1

2
c4

[(

2r2
4 (1 − cosϕ5) + l2

2
(1 + cosϕ5) − 2r4l sinϕ5

)1/2

− l

]2

= 1

2
c4

[(

2r2
4 (1 − cosq5) + l2

2
(1 + cosq5) − 2r4l sinq5

)1/2

− l

]2

,

Vm0 = 0,

Vm1 = m1g

[
l

2
sinϕ2 + l

2

]

= 1

2
m1gl [sinq2 + 1] ,

Vm2 = m2g

[

− l

2
sin (ϕ2 + ϕ3) + l sinϕ2 + l

2

]

=
1

2
m2gl [2 sinq2 − sin (q2 + q3) + 1] ,

Vm3 = m3g

[
l

2
sin (ϕ2 + ϕ3 + ϕ4) − l sin (ϕ2 + ϕ3) + l sinϕ2 + l

2

]

= m3g
1

2
l [sin (q2 + q3 + q4) − 2 sin (q2 + q3) + 2 sinq2 + 1] ,

Vm4 = 1

2
m4g [2 [sin (q2 + q3 + q4) − sin (q2 + q3) + sinq2]

− sin (q2 + q3 + q4 + q5) + 1] ,

which gives

V = c1

2

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) + 2r1l cosq2

)1/2

− l

]2

+

c1

2

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) − 2r1l cosq2

)1/2

− l

]2

+

c2

2

[(

2r2
2 (1 − cosq3) + l2

2
(1 + cosq3) + 2r2l sinq3

)1/2

− l

]2

+

c2

2

[(

2r2
2 (1 − cosq3) + l2

2
(1 + cosq3) − 2r2l sinq3

)1/2

− l

]2

+

c3

2

[(

2r2
3 (1 − cosq4) + l2

2
(1 + cosq4) + 2r3l sinq4

)1/2

− l

]2

+

c3

2

[(

2r2
3 (1 − cosq4) + l2

2
(1 + cosq4) − 2r3l sinq4

)1/2

− l

]2

+

c4

2

[(

2r2
4 (1 − cosq5) + l2

2
(1 + cosq5) + 2r4l sinq5

)1/2

− l

]2

+
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1

2
c4

[(

2r2
4 (1 − cosq5) + l2

2
(1 + cosq5) − 2r4l sinq5

)1/2

− l

]2

+

m1gl

2
[sinq2 + 1] + 1

2
m2gl [2 sinq2 − sin (q2 + q3) + 1]+

m3gl

2
[sin (q2 + q3 + q4) − 2 sin (q2 + q3) + 2 sinq2 + 1]+

m4g

2
[2 [sin (q2 + q3 + q4) − sin (q2 + q3) + sinq2]−

sin (q2 + q3 + q4 + q5) + 1] .

Non-potential forces
The generalized non-potential forces are

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

τi is a twisting moment, i = 1, ...,5.

Lagrange equations
Based on the obtained formulas for T and V , we are able to derive the dynamic

equation of the considered system in the Lagrange form:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,5, L = T − V,

which allows to represent the dynamic model of the considered system in the standard
matrix format:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35
d41 d42 d43 d44 d45
d51 d52 d53 d54 d55

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

d11 =
[

1

2
m0r0 + I1xx sin2 q2 +

(

m1
l2

4
+ I1yy

)

cos2 q2

]

+
[

m2l
2 cos2 q2 + I2xx sin2 (q2 + q3) +

(

m2
l2

4
+ I2yy

)

cos2 (q2 + q3)

]

+
[

I3xx sin2 (q2 + q3 + q4) +
(

m3
l2

4
+ I3yy

)

cos2 (q2 + q3 + q4)

]

+
[

I4xx sin2 (q2 + q3 + q4 + q5) +
(

m4
l2

4
+ I4yy

)

cos2 (q2+q3+q4+q5)

]

+
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l2
[

m3

(

cos2 q2 + cos2 (q2 + q3)
)

− m2 cosq2 cos (q2 + q3)
]

+
m3l

2 [(cosq2 − cos (q2 + q3)) cos (q2 + q3 + q4) − 2 cosq2 cos (q2 + q3)]−
m4l

2 [cosq2 cos (q2+q3+q4+q5) − cos (q2 + q3) cos (q2+q3+q4+q5)]+
m4l

2
[

cos2 (q2 + q3 + q4) − cos (q2 + q3 + q4) cos (q2 + q3 + q4 + q5)
]

+
m4l

2
[

cos2 q2 + cos2 (q2 + q3) − 2 cos (q2 + q3) cos (q2 + q3 + q4)
]

+
2m4l

2 [cosq2 (cos (q2 + q3 + q4) − cos (q2 + q3))] ,

d12 = d13 = d14 = d15 = 0, d21 = 0,

d22 =
[(

1

4
m1 + m2 + m3 + m4

)

l2 + I1zz

]

+
[(

1

4
m2 + m3 + m4

)

l2 + I2zz

]

−
[

(m2 + 2m3 + m4) l2 cosq3

]

+
[(

1

4
m3 + m4

)

l2 + I3zz

]

+
[

m4
l2

4
+ I4zz

]

+
[

(m3 + 2m4) l2 cos (q3 + q4) − (m3 + m4) l2 cosq4

]

+
m4l

2 [cos (q4 + q5) − cos (q3 + q4 + q5) − cosq5] ,

d23 = l2

2
[m4 cos (q4 + q5) − (m3 + m4) cosq4]+

[(
1

4
m2 + m3 + m4

)

l2 + I2zz

]

− (m2 + 2m3 + m4) l2

2
[cosq3]+

[(
1

4
m3 + m4

)

l2 + I3zz

]

+
[

m4
l2

4
+ I4zz

]

+
1

2

[

(m3 + 2m4) l2 cos (q3 + q4) − (m3 + m4) l2 cosq4

]

+
m4l

2

2
[cos (q4 + q5) − cos (q3 + q4 + q5) − cosq5] − m4

2

[

l2 cosq5

]

,

d24 =
[(

1

4
m3 + m4

)

l2 + I3zz

]

+
[

m4
l2

4
+ I4zz

]

+
1

2

[

(m3 + 2m4) l2 cos (q3 + q4) − (m3 + m4) l2 cosq4

]

+
m4l

2

2
[cos (q4 + q5) − cos (q3 + q4 + q5) − cosq5] − m4

2

[

l2 cosq5

]

,

d25 =
[

m4
l2

4
+ I4zz

]

+ m4l
2

2
[cos (q4 + q5) − cos (q3 + q4 + q5) − cosq5] ,

d31 = 0,

d32 = −1

2

[

(m2 + 2m3 + 2m4) l2 cosq3 + (m3 + 2m4) cosq4

]

+
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l2

2
[(m3 + 2m4) cos (q3 + q4) + m4 cos (q4 + q5) − m4 cos (q3 + q4 + q5)]+

[(
1

4
m2 + m3 + m4

)

l2 + I2zz

]

+
[(

1

4
m3 + m4

)

l2 + I3zz

]

−
l2 (m3 + 2m4)

2
cosq4 +

[

m4
l2

4
+ I4zz

]

− m4l
2

2
cosq5+

m4l
2

2
[cos (q4 + q5) − cosq5] ,

d33 =
[(

1

4
m2 + m3 + m4

)

l2 + I2zz

]

+
[(

1

4
m3 + m4

)

l2 + I3zz

]

−

l2 (m3 + 2m4) cosq4 +
[

m4
l2

4
+ I4zz

]

+ m4l
2 [cos (q4 + q5) − cosq5] ,

d34 =
[(

1

4
m3 + m4

)

l2 + I3zz

]

− 1

2
l2 [(m3 + 2m4) cosq4]+

[

m4
l2

4
+ I4zz

]

− m4

2

[

l2 cosq5

]

+ 1

2
m4l

2 [cos (q4 + q5) − cosq5] ,

d35 =
[

m4
l2

4
+ I4zz

]

+ 1

2
m4l

2 [cos (q4 + q5) − cosq5] ,

d41 = 0,

d42 = l2

2
[(m3 + 2m4) cos (q3 + q4) − m4 cos (q3 + q4 + q5)]−

l2

2
[(m3 + 2m4) cosq4 + m4 cosq5 − m4 cos (q4 + q5)]+

[(
1

4
m3 + m4

)

l2 + I3zz

]

+
[

m4
l2

4
+ I4zz

]

− m4
1

2

[

l2 cosq5

]

,

d43 = − l2

2
[(m3 + 2m4) cosq4 + m4 cosq5 − m4 cos (q4 + q5)]+

[(
1

4
m3 + m4

)

l2 + I3zz

]

+
[

m4
l2

4
+ I4zz

]

− m4

2

[

l2 cosq5

]

,

d44 =
[(

1

4
m3 + m4

)

l2 + I3zz

]

+
[

m4
l2

4
+ I4zz

]

− m4

[

l2 cosq5

]

,

d45 =
[

m4
l2

4
+ I4zz

]

− 1

2
m4

[

l2 cosq5

]

,

d51 = 0,

d52 = −m4l
2

2
cos (q3 + q4 + q5) + 1m4l

2

2
cos (q4 + q5)−

m4l
2

2
cosq5 +

[

m4
l2

4
+ I4zz

]

,
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d53 = m4l
2

2
cos (q4 + q5) − m4l

2

2
cosq5 + m4

l2

4
+ I4zz,

d54 = −1

2
m4l

2 cosq5 + m4
l2

4
+ I4zz,

d55 = m4
l2

4
+ I4zz,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

c11 = ff ric−1+

2

[(

I1xx − m1
l2

4
− I1yy + l2 (m4 − m3 − m2)

)

sinq2 cosq2

]

q̇2+
l2 [(m2 + 2m3 + 2m4) sinq2 cos (q2 + q3)] q̇2,

l2 [m4 sinq2 cos (q2+q3+q4+q5) − (m3 + m4) sinq2 cos (q2+q3+q4)] q̇2+

2

[(

I4xx − m4
l2

4
− I4yy

)

sin (q2 + q3 + q4 + q5) cos (q2 + q3 + q4 + q5)

]

×
(q̇2 + q̇3 + q̇4 + q̇5)+

2

[(

I2xx−m2
l2

4
−I2yy+l2 (m4−m3)

)

sin (q2+q3) cos (q2 + q3)

]

(q̇2 + q̇3)+
l2 [(m2 + 2m3 + 2m4) cosq2 sin (q2 + q3)] (q̇2 + q̇3)+
l2 [(m3 + 2m4) sin (q2 + q3) cos (q2 + q3 + q4)] (q̇2 + q̇3)+

2

(

I3xx−m3
l2

4
−I3yy

)

(q̇2+q̇3+q̇4) sin (q2 + q3 + q4) cos (q2 + q3 + q4)−
l2 (m3 + 2m4) (q̇2 + q̇3 + q̇4) cosq2 sin (q2 + q3 + q4)+
l2 (m3 + 2m4) (q̇2 + q̇3 + q̇4) cos (q2 + q3) sin (q2 + q3 + q4)+
2m4l

2 (q̇2 + q̇3 + q̇4) sin (q2 + q3 + q4) cos (q2 + q3 + q4)+
m4l

2 [sin (q2 + q3 + q4) cos (q2 + q3 + q4 + q5)] (q̇2 + q̇3 + q̇4)

m4l
2 [cos (q2 + q3) sin (q2 + q3 + q4 + q5)] (q̇2 + q̇3 + q̇4 + q̇5)+

m4l
2 [cos (q2 + q3 + q4) sin (q2 + q3 + q4 + q5)] (q̇2 + q̇3 + q̇4 + q̇5) ,

c12 = c13 = c14 = c15 = 0,

c21 = −
[(

I1xx − m1
l2

4
− I1yy

)

sinq2 cosq2 + 1

2
m2l

2 sin (2q2 + q3)

]

q̇1−
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[

m2l
2 sinq2 cosq2 +

(

I2xx − m2
l2

4
− I2yy

)

sin (q2 + q3) cos (q2 + q3)

]

q̇1−
[(

I3xx − m3
l2

4
− I3yy

)

sin (q2 + q3 + q4) cos (q2 + q3 + q4)

]

q̇1−
m3l

2

2
[2 sin (2q2 + q3) + sin (q3 + q4) + sin (2q2 + 2q3 + q4)] q̇1−

m3l
2 [sinq2 cosq2 + sin (q2 + q3) cos (q2 + q3)] q̇1−

m4l
2

2
[sin (2q2 + q3 + q4 + q5) − sin (2q2 + 2q3 + q4 + q5)] q̇1−

m4l
2

2
[sin (2q2 + 2q3 + 2q4 + q5)] q̇1+

m4l
2 [sinq2 cosq2 + sin (q2 + q3) cos (q2 + q3)] q̇1−

[(

I4xx − m4
l2

4
− I4yy

)

sin (q2 + q3 + q4 + q5) cos (q2 + q3 + q4 + q5)

]

q̇1−
m4l

2 [sin (2q2 + q3) − sin (2q2 + q3 + q4) + sin (2q2 + 2q3 + q4)] q̇1+
m4l

2 [sin (q2 + q3 + q4) cos (q2 + q3 + q4)] q̇1,

c22 = ff ric−2,

c23 = 1

2
l2 [(m3 + m4) sinq4] q̇4−

1

2
l2 [(m3 + 2m4) sin (q3 + q4)] (2q̇2 + q̇3 + q̇4)+

(m2 + 2m3 + m4) l2

2
[sinq3] (2q̇2 + q̇3) − l2m4

2
[sin (q4 + q5)] (q̇4 + q̇5)+

1m4l
2

2
[sin (q3 + q4 + q5)] (2q̇2 + q̇3 + q̇4 + q̇5) ,

c24 = l2 (m3 + m4)

2
[sinq4 − (m3 + 2m4) sin (q3 + q4)] (2q̇2 + q̇3 + q̇4)+

m4l
2

2
[sin (q3 + q4 + q5) − sin (q4 + q5)] (2q̇2 + q̇3 + q̇4 + q̇5) ,

c25 = m4l
2

2
[sinq5 + sin (q3 + q4 + q5) − sin (q4 + q5)] (2q̇2 + q̇3 + q̇4 + q̇5)+

m4l
2

2
[sinq5] (q̇3 + q̇4) ,

c31 = −
[(

I2xx − m2
l2

4
− I2yy

)

sin (q2 + q3) cos (q2 + q3)

]

q̇1−
[(

I3xx − m3
l2

4
− I3yy

)

sin (q2 + q3 + q4) cos (q2 + q3 + q4)

]

q̇1−
[(

I4xx − m4
l2

4
− I4yy

)

sin (q2 + q3 + q4 + q5) cos (q2 + q3 + q4 + q5)

]

q̇1−
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l2 (m2 + 2m3 + 2m4)

2
[cosq2 sin (q2 + q3)] q̇1−

l2 (m3 + 2m4)

2
[sin (2q2 + 2q3 + q4)] q̇1+

l2 [(m3 + m4) sin (q2 + q3) cos (q2 + q3)] q̇1−
l2 (2m4 − m3)

2
[cosq2 sin (q2 + q3 + q4)] q̇1−

m4l
2

2
[cosq2 sin (q2 + q3 + q4 + q5)] q̇1 + m4l

2 [sinq2 cosq2] q̇1−
m4l

2

2
[sin (2q2 + 2q3 + 2q4 + q5) − sin (2q2 + 2q3 + q4 + q5)] q̇1+

m4l
2 [sin (q2 + q3 + q4) cos (q2 + q3 + q4)] q̇1,

c32 = (m3 + 2m4)

2

[

sin (q3 + q4) − (m2 + 2m3 + 2m4) l2 sinq3

]

q̇2−
m4l

2

2
[sin (q3 + q4 + q5)] q̇2 + (m3 + 2m4)

2
[sinq4] q̇4−

m4l
2

2
[sin (q4 + q5)] (q̇4 + q̇5) ,

c33 = ff ric−3,

c34 = (m3 + 2m4) l2

2
[sinq4] (q̇2 + 2q̇3 + q̇4)−

m4l
2

2
[sin (q4 + q5)] (q̇2 + 2q̇3 + q̇4 + q̇5) ,

c35 = m4l
2

2
[sinq5] (q̇2 + q̇4)+

m4l
2

2
[sinq5 − sin (q4 + q5)] (q̇2 + 2q̇3 + q̇4 + q̇5) ,

c41 = −
[(

I3xx − m3
l2

4
− I3yy

)

sin (q2 + q3 + q4) cos (q2 + q3 + q4)

]

q̇1−
[(

I4xx−m4
l2

4
−I4yy

)

sin (q2 + q3 + q4 + q5) cos (q2 + q3 + q4 + q5)

]

q̇1+
(m3 + 2m4) l2

2
[(cosq2 − cos (q2 + q3)) sin (q2 + q3 + q4)] q̇1−

m4l
2

2
[(cosq2 − cos (q2 + q3)) sin (q2 + q3 + q4 + q5)] q̇1−

1

2
m4l

2 [sin (2q2 + 2q3 + 2q4 + q5)] q̇1+
m4l

2

2
[sin (q2 + q3 + q4) cos (q2 + q3 + q4)] q̇1,
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c42 = (m3 + 2m4) l2

2
[sin (q3 + q4)] q̇2 − (m3 + 2m4) l2

2
[sinq4] (q̇2 + q̇3)+

m4l
2

2
[sin (q4 + q5)] (q̇4 + q̇5) − m4l

2

2
[sin (q3 + q4 + q5)] q̇5,

c43 = − (m3 + 2m4) l2

2
[sinq4] (q̇2 + q̇3)+

m4l
2

2
[sin (q4 + q5)] (q̇2 + q̇3 + q̇4) ,

c44 = ff ric−4 − m4l
2

2
[sin (q4 + q5)] (q̇2 + q̇3) ,

c45 = −m4l
2

2
[sin (q4 + q5)] q̇2 + m4l

2

2
[sinq5] (2q̇2 + 2q̇3 + 2q̇4 + q̇5) ,

c51 = −
[(

I4xx−m4l
2

4
−I4yy

)

sin (q2+q3+q4+q5) cos (q2+q3+q4+q5)

]

q̇1−
m4l

2

2
[(cosq2 − cos (q2 + q3) + cos (q2 + q3 + q4))×

sin (q2 + q3 + q4 + q5)] q̇1,

c52 = −m4l
2

2
[sin (q3 + q4 + q5)] q̇2 + m4l

2

2
[sin (q4 + q5)] (q̇2 + q̇3)

−1

2
m4l

2 [sinq5] (q̇2 + q̇3 + q̇4) ,

c53 = 1

2
m4

[

l2 sin (q4 + q5)
]

(q̇2 + q̇3) − 1

2
m4

[

l2 sinq5

]

(q̇2 + q̇3 + q̇4) ,

c54 = −1

2
m4

[

l2 sinq5

]

(q̇2 + q̇3 + q̇4) ,

c55 = ff ric−5,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

g1
g2
g3
g4
g5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2
τ3
τ4
τ5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

g1 = 0,

g2 = c1

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) + 2r1l cosq2

)1/2

− l

]

×

1

2

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) + 2r1l cosq2

)−1/2]

×
((

l2

2
− 2r2

1

)

cosq2 − 2r1l sinq2

)

+
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c1

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) − 2r1l cosq2

)1/2

− l

]

×

1

2

[(

2r2
1 (1 − sinq2) + l2

2
(1 + sinq2) − 2r1l cosq2

)−1/2]

×
((

l2

2
− 2r2

1

)

cosq2 + 2r1l sinq2

)

+ (m1 + 2m2 + 2m3 + 2m4) gl

2
[cosq2] − m4gl

2
cos (q2 + q3 + q4 + q5)−

(m2+2m3+2+2m4) gl

2
cos (q2 + q3) + (m3+2m4) gl

2
cos (q2 + q3 + q4) ,

g3 = c2

[(

2r2
2 (1 − sinq3) + l2

2
(1 + sinq3) + 2r2l cosq3

)1/2

− l

]

×

1

2

[(

2r2
2 (1 − sinq3) + l2

2
(1 + sinq3) + 2r2l cosq3

)−1/2]

×
((

l2

2
− 2r2

2

)

cosq3 − 2r2l sinq3

)

+

c2

[(

2r2
2 (1 − sinq3) + l2

2
(1 + sinq3) − 2r2l cosq3

)1/2

− l

]

×

1

2

[(

2r2
2 (1 − sinq3) + l2

2
(1 + sinq3) − 2r2l cosq3

)−1/2]

×
((

l2

2
− 2r2

2

)

cosq3 + 2r2l sinq3

)

−
(m2 + 2m3 + 2m4) gl

2
cos (q2 + q3) + (m3 + 2m4) gl

2
cos (q2 + q3 + q4)−

m4gl

2
cos (q2 + q3 + q4 + q5) ,

g4 = c3

[(

2r2
3 (1 − sinq4) + l2

2
(1 + sinq4) + 2r3l cosq4

)1/2

− l

]

×

1

2

[(

2r2
3 (1 − sinq4) + l2

2
(1 + sinq4) + 2r3l cosq4

)−1/2]

×
((

l2

2
− 2r2

3

)

cosq4 − 2r3l sinq4

)

+

c3

[(

2r2
3 (1 − sinq4) + l2

2
(1 + sinq4) − 2r3l cosq4

)1/2

− l

]

×
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1

2

[(

2r2
3 (1 − sinq4) + l2

2
(1 + sinq4) − 2r3l cosq4

)−1/2]

×
((

l2

2
− 2r2

3

)

cosq4 + 2r3l sinq4

)

+
(m3 + 2m4) gl

2
[cos (q2 + q3 + q4)] − m4gl

2
cos (q2 + q3 + q4 + q5) ,

g5 = c4

[(

2r2
4 (1 − sinq5) + l2

2
(1 + sinq5) + 2r4l cosq5

)1/2

− l

]

×

1

2

[(

2r2
4 (1 − sinq5) + l2

2
(1 + sinq5) + 2r4l cosq5

)−1/2]

×
((

l2

2
− 2r2

4

)

cosq5 − 2r4l sinq5

)

+

c4

[(

2r2
4 (1 − sinq5) + l2

2
(1 + sinq5) − 2r4l cosq5

)1/2

− l

]

×

1

2

[(

2r2
4 (1 − sinq5) + l2

2
(1 + sinq5) − 2r4l cosq5

)−1/2]

×
((

l2

2
− 2r2

4

)

cosq5 + 2r4l sinq5

)

− m4gl

2
cos (q2 + q3 + q4 + q5) .

12.18 Articulated robot manipulator 2

Consider the robot depicted in Fig. 12.18.

Figure 12.18 Articulated robot.

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4.
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Kinetic energy
The kinetic energy T =∑5

i=1 Tmi
of this system is given by the following expres-

sion:

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,rot−0 = 1

2
I1yyϕ̇

2
1 = 1

2
I1yy q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,0 + Tm2,rot−0 =

m2

2
(l1 + r2)

2 ϕ̇2
1 + 1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I2xx 0 0
0 I2yy 0
0 0 I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠=

1

2

[

m2 (l1 + r2)
2 + I2yy

]

q̇2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)= 1

2
m3 (l1 + r2)

2 ϕ̇2
1+

1

2

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 m3 (r2 + d3)

2 + I3yy 0
0 0 I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠+

m3

⎛

⎝

− (ϕ̇1 + ϕ̇2) (r2 + d3) cos (ϕ1 + ϕ2)

0
− (ϕ̇1 + ϕ̇2) (r2 + d3) sin (ϕ1 + ϕ2)

⎞

⎠

�⎛

⎝

−ϕ̇1 (l1 + r2) sinϕ1
0

−ϕ̇1 (l1 + r2) cosϕ1

⎞

⎠=

m3

2

[

(l1 + r2)
2
]

q̇2
1 + 1

2

[

m3 (r2 + d3)
2 + I3yy

]

(q̇1 + q̇2)
2 +

m3 [(r2 + d3) (l1 + r2) sin (2q1 + q2)] (q̇1 + q̇2) q̇1,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

m4

2

[

ϕ̇2
1 (l1 + r2)

2 + (ϕ̇1 + ϕ̇2)
2 (r2 + d3)

2
]

+
m4 [ϕ̇1 (ϕ̇1 + ϕ̇2) (l1 + r2) (r2 + d3) sin (2ϕ1 + ϕ2)]+
1

2
w�

∥
∥
∥
∥
∥
∥

I4xx 0 0
0 m4d

2
4 + I4yy 0

0 0 m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥

w + m4aᵀ
4 b4 =

1

2

[

m4 (r2 + d3)
2 + I4xx sin2 q3 +

(

m4d
2
4 + I4yy

)

cos2 q3

]

(q̇1 + q̇2)
2 +

[m4 (l1 + r2) (r2 + d3) sin (2q1 + q2)] (q̇1 + q̇2) q̇1−
[m4d4 (l1 + r2) cos (2q1 + q2) cosq3] (q̇1 + q̇2) q̇1 + m4

2

[

(l1 + r2)
2
]

q̇2
1+

1

2

[

m4d
2
4 + I4zz

]

q̇2
3 − m4 [d4 (l1 + r2) sin (2q1 + q2) sinq3] q̇1q̇3−

m4 [d4 (r2 + d3) sinq3] (q̇1 + q̇2) q̇3,
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where

w4 =
⎛

⎝

− (ϕ̇1 + ϕ̇2) sinϕ3
− (ϕ̇1 + ϕ̇2) cosϕ3

ϕ̇3

⎞

⎠ ,

a4 =
⎛

⎝

− (ϕ̇1 + ϕ̇2) d4 sin (ϕ1 + ϕ2) cosϕ3 + ϕ̇3d4 cos (ϕ1 + ϕ2) sinϕ3
ϕ̇3d4 cosϕ3

(ϕ̇1 + ϕ̇2) d4 cos (ϕ1 + ϕ2) cosϕ3 + ϕ̇3d4 sin (ϕ1 + ϕ2) sinϕ3

⎞

⎠ ,

b4 =
⎛

⎝

−ϕ̇1 (l1 + r2) sinϕ1 − (ϕ̇1 + ϕ̇2) (r2 + d3) cos (ϕ1 + ϕ2)

0
−ϕ̇1 (l1 + r2) cosϕ1 − (ϕ̇1 + ϕ̇2) (r2 + d3) sin (ϕ1 + ϕ2)

⎞

⎠ ,

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)=

m5

2

[

ϕ̇2
1 (l1 + r2)

2 + (ϕ̇1 + ϕ̇2)
2 (r2 + d3)

2
]

+
m5 [ϕ̇1 (ϕ̇1 + ϕ̇2) (l1 + r2) (r2 + d3) sin (2ϕ1 + ϕ2)]+
1

2
w�

5

∥
∥
∥
∥
∥
∥

I5xx 0 0
0 m5 (l4 + d5)

2 + I5yy 0
0 0 m5 (l4 + d5)

2 + I5zz

∥
∥
∥
∥
∥
∥

w5 + m4a�
5 b5 =

1

2

[

m5 (l1 + r2)
2
]

q̇2
1 + 1

2

[(

m5 (l4 + d5)
2 + I5zz

)]

q̇2
3 + 1

2
[I5xx] q̇2

4+
1

2

[

m5 (r2+d3)
2 + I5xx sin2 q3 +

(

m5 (l4+d5)
2 + I5yy

)

cos2 q3

]

(q̇1 + q̇2)
2 +

m5 [(l1 + r2) (r2 + d3) sin (2q1 + q2)] (q̇1 + q̇2) q̇1−
[m5 (l4 + d5) (l1 + r2) cos (2q1 + q2) cosq3] (q̇1 + q̇2) q̇1−
I5xx [sinq3] (q̇1 + q̇2) q̇4 − m5 (l4 + d5) (l1 + r2) [sin (2q1 + q2) sinq3] q̇1q̇3−
m5 (l4 + d5) (r2 + d3) [sinq3] (q̇1 + q̇2) q̇3,

with

w5 =

⎛

⎜
⎜
⎝

− (ϕ̇1 + ϕ̇2) sinϕ3
+ϕ̇4
− (ϕ̇1 + ϕ̇2) cosϕ3

ϕ̇3

⎞

⎟
⎟
⎠

,

a5 =

⎛

⎜
⎜
⎜
⎜
⎝

− (ϕ̇1 + ϕ̇2) (l4 + d5) sin (ϕ1 + ϕ2) cosϕ3+
ϕ̇3 (l4 + d5) cos (ϕ1 + ϕ2) sinϕ3

ϕ̇3 (l4 + d5) cosϕ3
(ϕ̇1 + ϕ̇2) (l4 + d5) cos (ϕ1 + ϕ2) cosϕ3+
ϕ̇3 (l4 + d5) sin (ϕ1 + ϕ2) sinϕ3

⎞

⎟
⎟
⎟
⎟
⎠

,

b5 =
⎛

⎝

−ϕ̇1 (l1 + r2) sinϕ1 − (ϕ̇1 + ϕ̇2) (r2 + d3) cos (ϕ1 + ϕ2)

0
−ϕ̇1 (l1 + r2) cosϕ1 − (ϕ̇1 + ϕ̇2) (r2 + d3) sin (ϕ1 + ϕ2)

⎞

⎠ .
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Potential energy
The potential energy V =∑4

i=1 Vmi
contains

Vm1 = const, Vm2 = const, Vm3 = const,

Vm4 = m4gd4 sinϕ3 = m4gd4 sinq3,

Vm5 = m5g (l4 + d5) sinϕ3 = m5g (l4 + d5) sinq3,

so that

V = [m4gd4 + m5g (l4 + d5)] sinq3 + const.

Non-potential forces
The generalized forces are given by the following formulas:

Qnon-pot,i = τi − ff ric−1ϕ̇i = τi − ff ric−1q̇i ,

τi is a twisting moment, i = 1, ...,4.

Lagrange equations
Based on the expressions for T and V , we can derive the Lagrange equations for

the system:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,4, L = T − V,

which can be represented in the standard matrix format

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) D12 (q) D13 (q) −I5xx sinq3
D21 (q) D22 (q) D23 (q) −I5xx sinq3
D31 (q) D32 (q) D33 (q) 0

−I5xx sinq3 −I5xx sinq3 0 I5xx

∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = I1yy + (m2 + m3 + m4 + m5) (l1 + r2)
2 + I2yy+

(m3 + m4 + m5) (r2 + d3)
2 + I3yy + (I4xx + I5xx) sin2 q3+

(

m4d
2
4 + I4yy + m5 (l4 + d5)

2 + I5yy

)

cos2 q3+
2 (m3 + m4 + m5) (l1 + r2) (r2 + d3) sin (2q1 + q2)−
2 (l1 + r2) (m4d4 + m5 (l4 + d5)) cos (2q1 + q2) cosq3,

D21 (q) = (m3 + m4 + m5) (l1 + r2) (r2 + d3) sin (2q1 + q2)−
(l1 + r2) (m4d4 + m5 (l4 + d5)) cos (2q1 + q2) cosq3+
m3 (r2 + d3) + I3yy + m4 (r2 + d3)

2 + m5 (r2 + d3)
2 +
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(I4xx + I5xx) sin2 q3 +
(

m4d
2
4 + I4yy + m5 (l4 + d5)

2 + I5yy

)

cos2 q3,

D31 (q) = − (l1 + r2) (m4d4 + m5 (l4 + d5)) sin (2q1 + q2) sinq3−
(m4d4 + m5 (l4 + d5)) (r2 + d3) sinq3,

D12 (q) = (m3 + m4 + m5) (r2 + d3)
2 + I3yy + (I4xx + I5xx) sin2 q3+

(

m4d
2
4 + I4yy + m5 (l4 + d5)

2 + I5yy

)

cos2 q3+
(m3 + m4 + m5) (l1 + r2) (r2 + d3) sin (2q1 + q2)−
(l1 + r2) (m4d4 + m5 (l4 + d5)) cos (2q1 + q2) cosq3,

D22 (q) = m3 (r2 + d3) + I3yy + m4 (r2 + d3)
2 + m5 (r2 + d3)

2 +
(I4xx + I5xx) sin2 q3 +

(

m4d
2
4 + I4yy + m5 (l4 + d5)

2 + I5yy

)

cos2 q3,

D32 (q) = − [m4d4 + m5 (l4 + d5)] (r2 + d3) sinq3,

D13 (q) = − (l1 + r2) [m4d4 + m5 (l4 + d5)] sin (2q1 + q2) sinq3−
[m4d4 + m5 (l4 + d5)] (r2 + d3) sinq3,

D23 (q) = − [m4d4 + m5 (l4 + d5)] (r2 + d3) sinq3,

D33 (q) = m4d
2
4 + I4zz + m5 (l4 + d5)

2 + I5zz,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

C11 (q, q̇) C12 (q, q̇) C13 (q, q̇) −I5xx cosq3q̇3
C21 (q, q̇) ff ric−2 C23 (q, q̇) −I5xx cosq3q̇3
C31 (q, q̇) C32 (q, q̇) ff ric−3 I5xx cosq3 (q̇1 + q̇2)

−I5xx cosq3q̇3 −I5xx cosq3q̇3 0 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥

,

with

C11 (q, q̇) = ff ric−1+
2 (m3 + m4 + m5) (l1 + r2) (r2 + d3) cos (2q1 + q2) (q̇1 + q̇2)+
2 (l1 + r2) [m4d4 + m5 (l4 + d5)] sin (2q1 + q2) cosq3 (q̇1 + q̇2)+
2 (l1 + r2) [m4d4 + m5 (l4 + d5)] cos (2q1 + q2) sinq3q̇3,

C21 (q, q̇) = (m3 + m4 + m5) (l1 + r2) (r2 + d3) q̇1 cos (2q1 + q2)+
(l1 + r2) (m4d4 + m5 (l4 + d5)) q̇1 sin (2q1 + q2) cosq3,

C31 (q, q̇) = − (l1+r2) (m4d4+m5 (l4+d5)) cos (2q1+q2) sinq3 (3q̇1+2q̇2)−
(

I4xx − m4d
2
4 − I4yy + I5xx − m5 (l4 + d5)

2 − I5yy

)

sinq3 cosq3 (q̇1+2q2) ,

C12 (q, q̇) = (m3 + m4 + m5) (l1 + r2) (r2 + d3) cos (2q1 + q2) q̇2+
(l1 + r2) [m4d4 + m5 (l4 + d5)] q̇2 sin (2q1 + q2) cosq3,

C32 (q, q̇) = −
(

I4xx − m4d
2
4 − I4yy + I5xx − m5 (l4 + d5)

2 − I5yy

)

×
sinq3 cosq3 (q̇2 + 2q̇1) ,
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C13 (q, q̇) = 2
(

I4xx + I5xx − m4d
2
4

)

[sinq3 cosq3] (q̇1 + q̇2)−
2
(

I4yy + m5d
2
4 + I5yy

)

[sinq3 cosq3] (q̇1 + q̇2)−
(l1 + r2) [m4d4 + m5 (l4 + d5)] sin (2q1 + q2) cosq3q̇3−
(r2 + d3) [m4d4 + m5 (l4 + d5)] q̇3 cosq3,

C23 (q, q̇) = 2
(

I4xx + I5xx − m4d
2
4 − I4yy − m5d

2
4 − I5yy

)

×
sinq3 cosq3 (q̇1 + q̇2) − (r2 + d3) (m4d4 + m5 (l4 + d5)) q̇3 cosq3,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
0

−m4gd4 cosq3 − m5g (l4 + d5) cosq3
0

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2
τ3
τ4

∥
∥
∥
∥
∥
∥
∥
∥

.

12.19 Maker 110

Consider the robot Maker 110 represented in Fig. 12.19.

Figure 12.19 “Robot-Maker 110.”

Generalized coordinates
The generalized coordinates are

q1 := ϕ1, q2 := x, q3 := ϕ2.

Kinetic energy
The kinetic energy T =∑6

i=1 Tmi
consists of

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)= 1

2
I1yyϕ̇

2
1 = 1

2
I1yy q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm1−c.i.−0,v0
)= Tm2,rot−0 =
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1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I2xx 0 0
0 m2d

2
2 + I2yy 0

0 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠=

1

2

(

m2d
2
2 + I2yy

)

q̇2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)= Tm3,rot−0 =

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 m3l

2
2 + I3yy 0

0 0 m3l
2
2 + I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠=

1

2

[

m3l
2
2 + I3yy

]

q̇2
1 ,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)= Tm4,rot−0 =

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

m4l
2
2 + I4xx 0 0

0 m4l
2
2 + I4yy 0

0 0 I4zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠=

1

2

[

m4l
2
2 + I4yy

]

q̇2
1 ,

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)= Tm5,0 + Tm5,rot−0 =

1

2
m5

∥
∥
∥
∥
∥
∥

⎛

⎝

−ẋ sinϕ1 − ϕ̇1x cosϕ1 − ϕ̇1l2 sinϕ1
0

−ẋ cosϕ1 + ϕ̇1x sinϕ1 − ϕ̇1l2 cosϕ1

⎞

⎠

∥
∥
∥
∥
∥
∥

2

+

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I5xx 0 0
0 I5yy 0
0 0 I5zz

∥
∥
∥
∥
∥
∥

+
⎛

⎝

0
ϕ̇1
0

⎞

⎠=

1

2

[

m5

(

l2
2 + q2

2

)

+ I5yy

]

q̇2
1 + 1

2
m5q̇

2
2 + m5l2q̇1q̇2,

Tm6 = Tm6,0 + Tm6,rot−0 + m6
(

vm6−c.i.−0,v0
)=

1

2
m6

∥
∥
∥
∥
∥
∥

⎛

⎝

−ẋ sinϕ1 − ϕ̇1 (x + d5) cosϕ1 − ϕ̇1l2 sinϕ1
0

−ẋ cosϕ1 + ϕ̇1 (x + d5) sinϕ1 − ϕ̇1l2 cosϕ1

⎞

⎠

∥
∥
∥
∥
∥
∥

2

+

1

2

⎛

⎝

ϕ̇1 sinϕ2
−ϕ̇1 cosϕ2

ϕ̇2

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I6xx 0 0
0 m6d

2
6 + I6yy 0

0 0 m6d
2
6 + I6zz

∥
∥
∥
∥
∥
∥

⎛

⎝

ϕ̇1 sinϕ2
−ϕ̇1 cosϕ2

ϕ̇2

⎞

⎠+

m6a�
6 b6 = m6

2

[

l2
2 + (q2 + d5)

2
]

q̇2
1 + 1

2
m6q̇

2
2 + 1

2

[

m6d
2
6 + I6yy

]

q̇2
3+

1

2

[

I6xx sin2 q3 +
(

m6d
2
6 + I6yy

)

cos2 q3 + m6 (q2 + d5) d6 cosq3

]

q̇2
1+

m6l2q̇1q̇2 − [m6d6 sinq3] q̇2q̇3 − [m6d6l2 sinq3] q̇1q̇3,
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where

a6 =
⎛

⎝

−ϕ̇1d6 cosϕ1 cosϕ2 + ϕ̇2d6 sinϕ1 sinϕ2
−ϕ̇2d6 cosϕ2

ϕ̇1d6 sinϕ1 cosϕ2 + ϕ̇2d6 cosϕ1 sinϕ2

⎞

⎠ ,

b6 =
⎛

⎝

−ẋ sinϕ1 − ϕ̇1 (x + d5) cosϕ1 − ϕ̇1l2 sinϕ1
0

−ẋ cosϕ1 + ϕ̇1 (x + d5) sinϕ1 − ϕ̇1l2 cosϕ1

⎞

⎠ .

Potential energy
The potential energy V =∑5

i=1 Vmi
contains

Vm1 = const, Vm2 = const, Vm3 = const, Vm4 = const, Vm5 = const,

Vm6 = m6gd6 sinϕ2 = m6gd6 sinq3,

which gives

V = m6gd6 sinq3 + const.

Non-potential forces
The non-potential forces are

Qnon-pot,1 = τ1 − ff ric−1ϕ̇1 = τ1 − ff ric−1q̇1,

τ1 is a twisting moment,

Qnon-pot,2 = F2 − ff ric−2ẋ = F2 − ff ric−2q̇2,

F2 is a force of horizontal motion,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇3 = τ3 − ff ric−3q̇3,

τ3 is a twisting moment.

Lagrange equations
Based on the obtained formulas for T and V , we are able to get the Lagrange

equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3, L = T − V,

which can be rewritten in the following standard matrix format, representing the dy-
namic model of the considered system:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =
∥
∥
∥
∥
∥
∥

D11 (q) [m5 + m6] l2 −m6d6l2 sinq3
[m5 + m6] l2 [m5 + m6] −m6d6 sinq3

−m6d6l2 sinq3 −m6d6 sinq3 m6d
2
6 + I6yy

∥
∥
∥
∥
∥
∥

,
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D11 (q) = I1yy + m2d
2
2 + I2yy + m3l

2
2 + I3yy+

m4l
2
2 + I4yy + m5

(

l2
2 + q2

2

)

+ I5yy + m6

(

l2
2 + (q2 + d5)

2
)

+
m6 (q2 + d5) d6 cosq3 + I6xx sin2 q3 +

(

m6d
2
6 + I6yy

)

cos2 q3,

C (q, q̇) =
∥
∥
∥
∥
∥
∥

C11 (q, q̇) m6d6 cosq3q̇1 0
C21 (q, q̇) ff ric−2 −m6d6 cosq3q̇3
C31 (q, q̇) 0 ff ric−3

∥
∥
∥
∥
∥
∥

,

C11 (q, q̇) = ff ric−1 + 2 (m6 (q2 + d5) + m5q2) q̇2+
2
(

I6xx − m6d
2
6 − I6yy

)

q̇3 sinq3 cosq3 − m6 (q2 + d5) d6q̇3 sinq3,

C21 (q, q̇) = − [m5q2 + m6 (q2 + d5)] q̇1 −
[

1

2
m6d6 cosq3

]

q̇1,

C31 (q, q̇) = −
[(

I6xx − m6d
2
6 − I6yy

)

sinq3 cosq3

]

q̇1+
[m6 (q2 + d5) d6 sinq3] q̇1,

g (q) =
∥
∥
∥
∥
∥
∥

0
0

m6gd6 cosq3

∥
∥
∥
∥
∥
∥

, τ =
∥
∥
∥
∥
∥
∥

τ1
F2
τ3

∥
∥
∥
∥
∥
∥

.

12.20 Manipulator on a horizontal platform

Consider the following manipulator located on a horizontal platform, which is repre-
sented in Fig. 12.20.

Figure 12.20 Manipulator on a horizontal platform.

Generalized coordinates
The generalized coordinates for this mechanical system are as follows:

q1 := x, q2 := y, q3 := ϕ1, q4 := ϕ2.

Kinetic energy
The kinetic energy T =∑3

i=1 Tmi
of this system is given by the following expres-

sions:
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Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,0 = 1

2
m1

(

ẋ2 + ẏ2
)

= 1

2
m1

(

q̇2
1 + q̇2

2

)

,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= 1

2
m2

(

ẋ2 + ẏ2
)

+

1

2

⎛

⎝

0
ϕ̇1
0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I2xx 0 0
0 m2d

2
2 + I2yy 0

0 0 m2d
2
2 + I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1
0

⎞

⎠+
⎛

⎝

−ϕ̇1d2 sinϕ1
0

−ϕ̇1d2 cosϕ1

⎞

⎠

�⎛

⎝

ẋ

ẏ

0

⎞

⎠=

1

2

[

m2

(

q̇2
1 + q̇2

2

)

+
(

m2d
2
2 + I2yy

)

q̇2
3 − 2m2d2 sinq3q̇1q̇3

]

,

Tm3 = Tm3,0 + Tm3,rot−0 + m2
(

vm3−c.i.−0,v0
)=

1

2
m3

[

ẋ2 + ẏ2 + ϕ̇2
1 l2

2 − 2ẋϕ̇1l2 sinϕ1

]

+

1

2

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 m3d

2
3 + I3yy 0

0 0 m3d
2
3 + I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇2 + ϕ̇3

0

⎞

⎠+

m3

⎛

⎝

− (ϕ̇1 + ϕ̇2) d3 sin (ϕ1 + ϕ2)

0
− (ϕ̇1 + ϕ̇2) d3 cos (ϕ1 + ϕ2)

⎞

⎠

�⎛

⎝

ẋ − ϕ̇1l2 sinϕ1
ẏ

−ϕ̇1l2 cosϕ1

⎞

⎠=

1

2

[

m3

(

q̇2
1 + q̇2

2 + l2
2 q̇2

3 − 2l2 sinq3q̇1q̇3

)

+
(

m3d
2
3 + I3yy

)

(q̇3 + q̇4)
2
]

+
m3 [d3 sin (q3 + q4) (q̇3 + q̇4) q̇1 + d3l2 cosq4 (q̇3 + q̇4) q̇3] .

Potential energy
The potential energy V =∑3

i=1 Vi contains

Vm1 = const,

Vm2 = m2g (d2 sinϕ1 + const) = m2gd2 (sinq3 + const) ,

Vm3 = m3g (−d3 sin (ϕ1 + ϕ2) + l2 sinϕ1 + const) =
m3g (−d3 sin (q3 + q4) + l2 sinq3 + const) ,

which gives

V = m2gd2 sinq3 − m3g (d3 sin (q3 + q4) − l2 sinq3) + const.

Non-potential forces
The non-potential forces are given by

Qnon-pot,1 = F1 − ff ric−1ẋ = F1 − ff ric−1q̇1,
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F1 is a force of horizontal motion,

Qnon-pot,2 = F2 − ff ric−2ẏ = F2 − ff ric−2q̇2,

F2 is a force of transversal motion,

Qnon-pot,3 = τ3 − ff ric−3ϕ̇1 = τ3 − ff ric−1q̇3,

τ3 is a twisting moment,

Qnon-pot,4 = τ4 − ff ric−4ϕ̇2 = τ4 − ff ric−4q̇4,

τ4 is a twisting moment.

Lagrange equations
Using the obtained expressions for T and V , we are able to derive the Lagrange

equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,4, L = T − V,

which leads to the following dynamic model:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) 0 D13 (q) m3d3 sin (q3 + q4)

0 [m1 + m2 + m3] 0 0
D31 (q) 0 D33 (q) D34 (q)

m3d3 sin (q3 + q4) 0 D43 (q) m3d
2
3 + I3yy

∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = [m1 + m2 + m3] ,

D31 (q) = (m2d2 + m3l2) sinq3 + m3d3 sin (q3 + q4) ,

D13 (q) = − (m2d2 + m3l2) sinq3 + m3d3 sin (q3 + q4) ,

D33 (q) = m2d
2
2 + I2yy + m3l

2
2 + m3d

2
3 + I3yy + 2m3d3l2 cosq4,

D43 (q) = +m3d
2
3 + I3yy + m3d3l2 cosq4,

D34 (q) = +m3d
2
3 + I3yy + m3d3l2 cosq4,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥

ff ric−1 0 C13 (q, q̇) C14 (q, q̇)

0 ff ric−2 0 0
0 0 ff ric−3 C24 (q, q̇)

0 0 m3d3l2 sinq4q̇3 ff ric−4

∥
∥
∥
∥
∥
∥
∥
∥

,

C13 (q, q̇) = − (m2d2 + m3l2) cosq3q̇3+
m3d3 cos (q3 + q4) (q̇3 + 2q̇4) ,

C14 (q, q̇) = m3d3 cos (q3 + q4) (q̇4 + 2q̇3) ,

C24 (q, q̇) = −m3d3l2 sinq4 (2q̇3 + q̇4) ,
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g (q) =

∥
∥
∥
∥
∥
∥
∥
∥

0
0

m2gd2 cosq3 − m3g (d3 cos (q3 + q4) − l2 cosq3)

−m3gd3 cos (q3 + q4)

∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥

F1
F2
τ3
τ4

∥
∥
∥
∥
∥
∥
∥
∥

.

12.21 Two-arm planar manipulator

Consider the two-arm planar manipulator represented in Fig. 12.21.

Figure 12.21 Two-arms planar manipulator.

Generalized coordinates
The generalized coordinates are

q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4, q5 := ϕ5.

Kinetic energy
The kinetic energy T =∑6

i=1 Tmi
consists of

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm1−c.i.−0,v0
)=

Tm1,rot−0 = 1

2
I1yyϕ̇

2
1 = 1

2
I1yy q̇

2
1 ,

Tm2 = Tm2,0 + Tm2,rot−0 + m2
(

vm1−c.i.−0,v0
)=

Tm2,rot−0 = 1

2
I2yyϕ̇

2
1 = 1

2
I2yy q̇

2
1 ,

Tm3 = Tm3,0 + Tm3,rot−0 + m3
(

vm3−c.i.−0,v0
)= 1

2
m3

(
l2

2

)2

ϕ̇2
1+

1

2

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I3xx 0 0
0 m3d

2
3 + I3yy 0

0 0 m3d
2
3 + I3zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1 + ϕ̇2

0

⎞

⎠+
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m3

⎛

⎝

− (ϕ̇1 + ϕ̇2) d3 sin (ϕ1 + ϕ2)

0
− (ϕ̇1 + ϕ̇2) d3 cos (ϕ1 + ϕ2)

⎞

⎠

�
⎛

⎜
⎜
⎜
⎝

ϕ̇1
l2

2
sinϕ1

0

ϕ̇1
l2

2
cosϕ1

⎞

⎟
⎟
⎟
⎠

=

m3l
2
2

8
q̇2

1 + 1

2

[

m3d
2
3 + I3yy

]

(q̇1 + q̇2)
2 − m3

2
[l2d3 cosq2] (q̇1 + q̇2) q̇1,

Tm4 = Tm4,0 + Tm4,rot−0 + m4
(

vm4−c.i.−0,v0
)=

1

2
m4

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

− (ϕ̇1 + ϕ̇2) l3 sin (ϕ1 + ϕ2) + ϕ̇1
l2

2
sinϕ1

0

− (ϕ̇1 + ϕ̇2) l3 cos (ϕ1 + ϕ2) + ϕ̇1
l2

2
cosϕ1

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+

1

2
w�

4

∥
∥
∥
∥
∥
∥

I4xx 0 0
0 m4d

2
4 + I4yy 0

0 0 m4d
2
4 + I4zz

∥
∥
∥
∥
∥
∥

w4 + m4a�
4 b4 =

m4

8
l2
2 q̇2

1 + 1

2
m4l

2
3 (q̇1 + q̇2)

2 + 1

2

[

m4d
2
4 + I4yy

]

(q̇1 + q̇2 + q̇3)
2 −

m4

2
[l2l3 cosq2] (q̇1 + q̇2) q̇1 − m4 [l3d4 cosq3] (q̇1 + q̇2 + q̇3) (q̇1 + q̇2)+

m4

2
[l2d4 cos (q2 + q3)] (q̇1 + q̇2 + q̇3) q̇1,

where

w4 =
⎛

⎝

0
(ϕ̇1 + ϕ̇2 + ϕ̇3)

0

⎞

⎠ , a4 =
⎛

⎝

(ϕ̇1 + ϕ̇2 + ϕ̇3) d4 sin (ϕ1 + ϕ2 + ϕ3)

0
(ϕ̇1 + ϕ̇2 + ϕ̇3) d4 cos (ϕ1 + ϕ2 + ϕ3)

⎞

⎠ ,

b4 =

⎛

⎜
⎜
⎜
⎝

− (ϕ̇1 + ϕ̇2) l3 sin (ϕ1 + ϕ2) + ϕ̇1
l2

2
sinϕ1

0

− (ϕ̇1 + ϕ̇2) l3 cos (ϕ1 + ϕ2) + ϕ̇1
l2

2
cosϕ1

⎞

⎟
⎟
⎟
⎠

,

Tm5 = Tm5,0 + Tm5,rot−0 + m5
(

vm5−c.i.−0,v0
)= 1

2
m5

(
l2

2

)2

ϕ̇2
1+

1

2

⎛

⎝

0
ϕ̇1 + ϕ̇4

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I5xx 0 0
0 m5d

2
5 + I5yy 0

0 0 m5d
2
5 + I5zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇1 + ϕ̇4

0

⎞

⎠+

m5

⎛

⎝

− (ϕ̇1 + ϕ̇4) d5 sin (ϕ4 − ϕ1)

0
(ϕ̇1 + ϕ̇4) d5 cos (ϕ4 − ϕ1)

⎞

⎠

�
⎛

⎜
⎜
⎜
⎝

−ϕ̇1
l2

2
sinϕ1

0

−ϕ̇1
l2

2
cosϕ1

⎞

⎟
⎟
⎟
⎠

=
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m5l
2
2

8
q̇2

1 +
[

m5d
2
5 + I5yy

]

2
(q̇1 + q̇4)

2 − m5

2
[l2d5 cosq4] (q̇1 + q̇4) q̇1,

Tm6 = Tm6,0 + Tm6,rot−0 + m4
(

vm6−c.i.−0,v0
)=

m6

2

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

− (ϕ̇1 + ϕ̇4) l5 sin (ϕ4 − ϕ1) − ϕ̇1
l2

2
sinϕ1

0

(ϕ̇1 + ϕ̇4) l5 cos (ϕ4 − ϕ1) − ϕ̇1
l2

2
cosϕ1

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

+

1

2
w�

6

∥
∥
∥
∥
∥
∥

I4xx 0 0
0 m6d

2
6 + I6yy 0

0 0 m6d
2
6 + I6zz

∥
∥
∥
∥
∥
∥

w6 + m6a�
6 b6 =

1

8
m6l

2
2 q̇2

1 + 1

2
m6l

2
5 (q̇1 + q̇4)

2 + 1

2

[

m6d
2
6 + I6yy

]

(q̇1 + q̇4 + q̇5)
2 −

m6

2
[l2l5 cosq4] (q̇1 + q̇4) q̇1 − m6 [l5d6 cosq5] (q̇1 + q̇4 + q̇5) (q̇1 + q̇4)+

1

2
m6 [l2d6 cos (q4 + q5)] (q̇1 + q̇4 + q̇5) q̇1,

with

w6 =
⎛

⎝

0
(ϕ̇1 + ϕ̇4 + ϕ̇5)

0

⎞

⎠ , a6 =
⎛

⎝

(ϕ̇1 + ϕ̇4 + ϕ̇5) d6 sin (ϕ4 + ϕ5 − ϕ1)

0
− (ϕ̇1 + ϕ̇4 + ϕ̇5) d6 cos (ϕ4 + ϕ5 − ϕ1)

⎞

⎠ ,

b6 =

⎛

⎜
⎜
⎜
⎝

− (ϕ̇1 + ϕ̇4) l5 sin (ϕ4 − ϕ1) − ϕ̇1
l2

2
sinϕ1

0

(ϕ̇1 + ϕ̇4) l5 cos (ϕ4 − ϕ1) − ϕ̇1
l2

2
cosϕ1

⎞

⎟
⎟
⎟
⎠

.

Potential energy
The potential energy V is calculated as

V =
6
∑

i=1

Vmi
,

Vm1 = const, Vm2 = const, Vm3 = const,

Vm4 = const, Vm5 = const, Vm6 = const,

which gives

V = const.

Non-potential forces
The non-potential forces are

Qnon-pot,i = τi − ff ric−i ϕ̇i = τi − ff ric−i q̇i ,

τi is a twisting moment, i = 1, ...,5.
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Lagrange equations
Based on the obtained expressions for T and V , we are able to derive the Lagrange

equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1, ...,5, L = T − V,

which lead to the following dynamic model:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

D11 (q) D12 (q) D13 (q) D14 (q) D15 (q)

D21 (q) D22 (q) D23 (q) 0 0
D31 (q) D32 (q) m4d

2
4 + I4yy 0 0

D41 (q) 0 0 D44 (q) D45 (q)

D51 (q) 0 0 D54 (q) m6d
2
6 + I6yy

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

D11 (q) = I1yy + I2yy + 1

4
(m3 + m4 + m5 + m6) l2

2+
m3d

2
3 + I3yy + m4l

2
3 − 2m4l3d4 cosq3 − (m3d3 + m4l3) l2 cosq2+

m4l2d4 cos (q2 + q3) + m4d
2
4 + I4yy + m5d

2
5 + I5yy + m6l

2
5−

2m6l5d6 cosq5 − (m5d5 + m6l5) l2 cosq4 + m6l2d6 cos (q4 + q5)+
m6d

2
6 + I6yy,

D21 (q) = −1

2
(m3d3 + m4l3) l2 cosq2 + 1

2
m4l2d4 cos (q2 + q3)+

m3d
2
3 + I3yy + m4l

2
3 − 2m4l3d4 cosq3 + m4d

2
4 + I4yy,

D31 (q) = 1

2
m4l2d4 cos (q2 + q3) − m4l3d4 cosq3 + m4d

2
4 + I4yy,

D41 (q) = −1

2
(m5d5 + m6l5) l2 cosq4 + 1

2
m6l2d6 cos (q4 + q5)+

m5d
2
5 + I5yy + m6l

2
5 − 2m6l5d6 cosq5 + m6d

2
6 + I6yy,

D51 (q) = 1

2
m6l2d6 cos (q4 + q5) + m6d

2
6 + I6yy − m6l5d6 cosq5,

D12 (q) = m3d
2
3 + I3yy + m4l

2
3 − 2m4l3d4 cosq3−

(m3d3 + m4l3) l2

2
cosq2 + m4l2d4

2
cos (q2 + q3) + m4d

2
4 + I4yy,

D22 (q) = m3d
2
3 + I3yy + m4l

2
3 − 2m4l3d4 cosq3 + m4d

2
4 + I4yy,

D32 (q) = −m4l3d4 cosq3 + m4d
2
4 + I4yy,

D13 (q) = 1

2
m4l2d4 cos (q2 + q3) + m4d

2
4 + I4yy − m4l3d4 cosq3,

D23 (q) = m4d
2
4 + I4yy − m4l3d4 cosq3,
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D14 (q) = m5d
2
5 + I5yy + m6l

2
5 − 2m6l5d6 cosq5−

(m5d5 + m6l5) l2

2
cosq4 + m6l2d6

2
cos (q4 + q5) + m6d

2
6 + I6yy,

D44 (q) = m5d
2
5 + I5yy + m6l

2
5 − 2m6l5d6 cosq5 + m6d

2
6 + I6yy,

D54 (q) = m6d
2
6 + I6yy − m6l5d6 cosq5,

D15 (q) = 1

2
m6l2d6 cos (q4 + q5) + m6d

2
6 + I6yy − m6l5d6 cosq5,

D45 (q) = m6d
2
6 + I6yy − m6l5d6 cosq5,

and

C (q, q̇) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

ff ric−1 C12 (q, q̇) C13 (q, q̇) C14 (q, q̇) C15 (q, q̇)

C21 (q, q̇) ff ric−2 C23 (q, q̇) 0 0
C31 (q, q̇) C32 (q, q̇) ff ric−3 0 0
C41 (q, q̇) 0 0 ff ric−4 C45 (q, q̇)

C51 (q, q̇) 0 0 C54 (q, q̇) ff ric−5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

C21 (q, q̇) = − (m3d3 + m4l3) l2

2
[sinq2] q̇1 + m4l2d4

2
[sin (q2 + q3)] q̇1,

C31 (q, q̇) = −m4l3d4 sinq3 (q̇1 + q̇2) + m4l2d4

2
[sin (q2 + q3)] q̇1,

C41 (q, q̇) = − (m5d5 + m6l5) l2

2
[sinq4] q̇1 + m6l2d6

2
[sin (q4 + q5)] q̇1,

C51 (q, q̇) = −m6l5d6 sinq5 (q̇1 + q̇4) + m6l2d6

2
[sin (q4 + q5)] q̇1,

C12 (q, q̇) = (m3d3 + m4l3) l2

2
sinq2 (2q̇1 + q̇2)−

m4l2d4

2
sin (q2 + q3) (2q̇1 + q̇2 + q̇3) ,

C32 (q, q̇) = −m4l3d4 sinq3 (q̇1 + q̇2) ,

C13 (q, q̇) = m4l3d4 sinq3 (2q̇1 + 2q̇2 + q̇3)−
m4l2d4

2
[sin (q2 + q3)] (2q̇1 + q̇2 + q̇3) ,

C23 (q, q̇) = m4l3d4 sinq3 (2q̇1 + 2q̇2 + q̇3) ,

C14 (q, q̇) = (m5d5 + m6l5) l2

2
[sinq4] (2q̇1 + q̇4)−

m6l2d6

2
[sin (q4 + q5)] (2q̇1 + q̇4 + q̇5) ,

C54 (q, q̇) = −m6l5d6 sinq5 (q̇1 + q̇4) ,

C15 (q, q̇) = [m6l5d6 sinq5] (2q̇1 + 2q̇4 + q̇5)−
m6l2d6

2
[sin (q4 + q5)] (2q̇1 + q̇4 + q̇5) ,
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C45 (q, q̇) = m6l5d6 sinq5 (2q̇1 + 2q̇4 + q̇5) ,

g (q) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0
0
0
0
0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, τ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

τ1
τ2
τ3
τ4
τ5

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

12.22 Manipulator with three degrees of freedom

Consider the manipulator with three degrees of freedom represented in Fig. 12.22.

Figure 12.22 Manipulator with three degrees of freedom.

Generalized coordinates
The generalized coordinates are selected as

q1 := z, q2 := ϕ, q3 := x.

Kinetic energy
The kinetic energy T =∑2

i=1 Tmi
for this system is as follows:

Tm1 = Tm1,0 + Tm1,rot−0 + m1
(

vm2−c.i.−0,v0
)= Tm1,0 + Tm1,rot−0 = 1

2
m1ż

2

+1

2

⎛

⎝

0
ϕ̇

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I1xx 0 0
0 I1yy 0
0 0 I1zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇

0

⎞

⎠= 1

2

[

m1q̇
2
1 + I1yy q̇

2
2

]

,

Tm2 = Tm2,rot−0 + m2
(

vm2−c.i.−0,v0
)= Tm2,0 + Tm2,rot−0 =

1

2
m2

[

ẋ2 + ż2 +
(

a2 + (b + x)2
)

ϕ̇2
]

+
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1

2

⎛

⎝

0
ϕ̇

0

⎞

⎠

� ∥
∥
∥
∥
∥
∥

I2xx 0 0
0 I2yy 0
0 0 I2zz

∥
∥
∥
∥
∥
∥

⎛

⎝

0
ϕ̇

0

⎞

⎠=

m2

2

[

q̇2
3 + q̇2

1 +
(

a2 + (b + q3)
2
)

q̇2
2

]

.

Potential energy
The potential energy V =∑2

i=1 Vmi
contains

Vm1 = m1gz = m1gq1, Vm2 = m2gz = m2gq1,

which gives

V = (m1 + m2) gq1.

Non-potential forces
The non-potential forces are

Qnon-pot,1 = F1 − ff ric−1ẏ = F1 − ff ric−1q̇1,

F1 is a force of vertical motion,

Qnon-pot,2 = τ2 − ff ric−2ϕ̇ = τ2 − ff ric−2q̇2,

τ2 is a twisting moment,

Qnon-pot,3 = F3 − ff ric−3ẋ = F3 − ff ric−3q̇3,

F3 is a force of horizontal motion.

Lagrange equations
The obtained expressions for T and V allow us to derive the following Lagrange

equations:

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qnon-pot,i , i = 1,2,3, L = T − V,

which leads to the following dynamic model:

D (q) q̈ + C (q, q̇) q̇ + g (q) = τ,

where

D (q) =
∥
∥
∥
∥
∥
∥

[m1 + m2] 0 0
0

[

I1yy + m2
(

a2 + (b + q3)
2)] 0

0 0 m2

∥
∥
∥
∥
∥
∥

,

C (q, q̇) =
∥
∥
∥
∥
∥
∥

ff ric−1 0 0
0 ff ric−2 + 2 [m2 (b + q3)] q̇3 0
0 −m2 [b + q3] q̇2 ff ric−3

∥
∥
∥
∥
∥
∥

,
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g (q) =
∥
∥
∥
∥
∥
∥

[m1 + m2]g
0
0

∥
∥
∥
∥
∥
∥

, τ =
∥
∥
∥
∥
∥
∥

F1
τ2
F3

∥
∥
∥
∥
∥
∥

.

12.23 CD motor with load

Consider now a CD motor with load, as depicted in Fig. 12.23.

Figure 12.23 CD motor with load.

Here:

• i is the armor current,
• u is the terminal voltage,
• L is the armature inductance,
• λ0 is the counter-electric force constant,
• R is the armor resistance,
• u is the switch position control,
• ω is the angular velocity,
• τl is the load torque,
• J is the motor and load inertia, and
• k is the torque constant.

Generalized coordinates
The generalized coordinates are

q1 = q, q2 = ϕ,

so that

i := q̇1 = q̇, ω := q̇2 = ϕ̇. (12.8)
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Kinetic and potential energies and non-potential forces
Using Table 6.1 we obtain

T1 = 1

2
Lind q̇2

1 , V1 = 0, Q1,non-pot = u − Rq̇1 − λq̇2,

T2 = 1

2
J q̇2

2 , V2 = 0, Q2,non-pot = kq̇1 − τl.

Lagrange equations
In this case the Lagrange equations

d

dt

∂

∂q̇i

L − ∂

∂qi

L = Qi,non-pot , i = 1,2,

L = T − V, T =
2
∑

i=1

Ti, V =
2
∑

i=1

Vi

are as follows:

∂

∂q̇1
L = ∂

∂q̇1
T1 = Lind q̇1,

∂

∂q1
L = 0,

∂

∂q̇2
L = ∂

∂q̇2
T2 = J q̇2,

∂

∂q2
L = 0,

and, as a result,

Lind q̈1 = u − Rq̇1 − λq̇2,

J q̈2 = kq̇1 − τl,

or using (12.8), we finally obtain

Lind

d

dt
i = u − Ri − λω,

J
d

dt
ω = ki − τl.

12.24 Models of power converters with switching-mode
power supply

Four non-isolated switching-mode (SM) DC-to-DC converter topologies are known:
buck, boost, buck-boost, and Ćuk. Here we will consider only the first two. The input
is on the left side, and the output with load is on the right side. The switch is typically
a MOSFET, IGBT, or BJT transistor.

The buck (step-down, Fig. 12.24) or boost (step-up, Fig. 12.25) converter is a type
of DC-to-DC converter that has an output voltage magnitude that is either greater than
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or less than the input voltage magnitude. It is equivalent to a “flyback converter” using
a single inductor instead of a transformer.

Two different topologies are called buck or boost converter. Both of them can pro-
duce a range of output voltages, ranging from much larger (in absolute magnitude)
than the input voltage, down to almost zero.

12.24.1 Buck type DC-DC converter

The buck type DC-DC converter has a counter-circuit, as shown in Fig. 12.24, where:

Figure 12.24 Buck type DC-DC converter.

• iL is the coil current,
• v0 is the capacitor voltage,
• L is the converter inductance,
• Vg is the voltage source,
• R is the load, and
• u is the switch position control.

Generalized coordinates
The following coordinates are defined:

q̇1 = iL, q2 = v0.

Kinetic and potential energies and non-potential forces
Using Table 6.1, the kinetic and potential energies are defined as

T1 = Lq̇2
1

2
, V1 = q2

1

2C
,

T2 = Cq̇2
2

2
, V2 = 0,

T = T1 + T2, V = V1 + V2,
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and

Q1,non-pot = Vgu,

Q2,non-pot = d

dt
q̇1 − q̇2

R
,

where u takes the values

u =
{

1, switch in position 1,

0, switch in position 2.

Lagrange equations
Lagrange’s equations are given by

d

dt

∂ (T − V )

∂q̇i

− ∂ (T − V )

∂qi

=
d

dt

∂T

∂q̇i

+ ∂V

∂qi

= Qi,non-pot , i = 1,2.

(12.9)

The following dynamic equations are derived from (12.9):

L
d

dt
q̇1 + q2 = Vgu,

Cq̈2 = d

dt
q̇1 − q̇2

R
,

or equivalently,

L
d

dt
iL = −v0 + Vgu,

Cv̈0 = d

dt
iL − v̇0

R
.

Integrating the second equation we obtain

L
d

dt
iL = −v0 + Vgu,

Cv̇0 = iL − v0

R
,

if the relationship

Cv̇0 (0) = iL (0) − v0 (0)

R

is taken into account.
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12.24.2 Boost type DC-DC converter

A boost type DC-DC converter is shown in Fig. 12.25, where again:

Figure 12.25 Boost type DC-DC converter.

• iL is the coil current,
• v0 is the capacitor voltage,
• L is the converter inductance,
• Vg is the voltage source,
• R is the load, and
• u is the switch position control.

Generalized coordinates
Analogously, define the generalized coordinates as

q̇1 = iL, q2 = v0.

Kinetic and potential energies and non-potential forces
Using Table 6.1, the kinetic and potential energies are defined as

T1 = Lq̇2
1

2
, V1 = q2

1

2C
,

T2 = Cq̇2
2

2
, V2 = q2

2

2L
u,

T = T1 + T2, V = V1 + V2,

and

Q1,non-pot = −q2u + Vg,

Q2,non-pot = d

dt
q̇1 − q̇2

R
,
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where u takes the values

u =
{

1, switch in position 1,

0, switch in position 2.

Lagrange equations
Lagrange’s equations are given by

d

dt

∂ (T − V )

∂q̇i

− ∂ (T − V )

∂qi

=
d

dt

∂T

∂q̇i

+ ∂V

∂qi

= Qi,non-pot , i = 1,2.

The following dynamic equations are derived from the relations above:

L
d

dt
q̇1 = − (1 − u)q2 + Vg,

C
d

dt
q̇2 = d

dt
q̇1 − q2u

L
− q̇2

R
.

Integration of the second equation gives

L
d

dt
q̇1 = − (1 − u)q2 + Vg,

C
d

dt
q2 = q̇1 − q̇1u − q2

R
,

or equivalently,

L
d

dt
iL = − (1 − u)v0 + Vg,

C
d

dt
v0 = (1 − u) iL − q2

R
.

12.25 Induction motor

A model of an induction motor can be represented by the circuit shown in Fig. 12.26,
where:

• is is the current in the stator,
• ir is the rotor current,
• Rs is the stator resistance,
• Rr is the rotor resistance,
• L1s is the inductance in the stator,
• L1r is the rotor inductance,
• Lm is the mutual inductance,
• pλs is the magnetic flux in the stator,
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Figure 12.26 Model of an induction motor.

• pλr is the magnetic flux in the rotor,
• vs is the voltage applied to the stator, and
• jωλr is the induced voltage in the rotor.

Generalized coordinates
Expressing the coordinates in terms of the currents that appear in the figure we have

q1 = is , q2 = ir .

Kinetic energy
Using the relation (see Chapter 6)

	 = Li,

we are able to derive the kinetic energies in stator, rotor, and mutual induction, which
are

Ts = L1s i
2
s

2
,

Tr = L1r i
2
r

2
,

Tm = Lm (im + ir )
2

2
.

Potential energy
Here (in the no capacity case)

V = 0.

Non-potential forces
Moreover

Qs,non-pot = −vs + is (Rs + jωL1s) + (is + ir ) jωLm,

Qr,non-pot = −vr + ir (Rr + jωL1r ) + (is + ir ) jωLm.
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Lagrange equations
Applying the Lagrange formula

d

dt

∂T

∂q̇i

− ∂T

∂qi

= Qi,non-pot , i = 1,2,

to the two branches, as shown in the circuit of Fig. 12.26, the following equations are
obtained:

is (Rs + jωL1s) + (is + ir ) jωLm = vs − L1s

dis

dt
− Lm

d (ir + is)

dt
,

ir (Rr + jωL1r ) + (is + ir ) jωLm = vr − L1r

dir

dt
− Lm

d (ir + is)

dt
.

Defining the vectors

i =
(

is
ir

)

, v =
(

vs

vr

)

,

we can rewrite the previous relations in the vector format

d

dt

(

is
ir

)

= 1

Lσ 2
Ai + 1

Lσ 2
Bv,

where

A =
(

−Lr (Rs + jωLm + jωLs) + jωL2
m −jωLmLr + Lm (Rr + jωLm + jωLr )

−jωLSLm + LR (Rs + jωLm + jωLs) jωLRLm − LS (Rr + jωLm + jωLr )

)

,

B =
(−L1r Lm

LR −LS

)

.

Here

LR = Lm + L1r ,

LS = Lm + L1s ,

Lσ 2 = L1rLs − L2
m.

Flow equations are represented by

d

dt
pλs = vs − Rsis,

d

dt
pλr = vr − Rrir .
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A
Acceleration, 11

absolute, 40, 46
angular, 40, 47
Coriolis, 47
normal, 18
relative, 47
tangential, 18
tending to the axis, 40
translation, 47

Affine plant, 372
Algebraic complement, 64
Amplitude, 247
Anticommutativity, 4
Asymptotic stability criterion, 287
Average value, 100
Axis of rotation, 34

B
Basic mechanic theorem, 206
Bernoulli’s equation, 149
Boost type DC-DC converter, 482
Brackets of Lagrange, 354
Buck type DC-DC converter, 480

C
Canonical transformation, 338
Capacitance, 208
CD motor, gear train and load, 412
CD motor with load, 478
Center of mass, 93

dynamic properties, 103
Center of velocities, 42
Central moments of inertia, 162
Centrifugal moments, 155
Characteristic

amplitude, 279
amplitude-phase, 278
phase, 279

Characteristic equation, 248
Characteristic polynomial, 248

Coefficients of Lamé, 10
Commutativity, 2
Complementary slackness condition, 227
Complete integral, 362
Component, 2
Coordinate curve, 10
Coordinates

Cartesian, 9
Cost functional, 370
Criterion of parallelism, 2, 4
Criterion of polynomial robust stability, 305
Cyclic coordinate, 323

D
Degrees of freedom, 192
Differential kinematic equations, 84
Differential kinematic equations in Euler

angles, 85
Dirichlet’s conditions, 274
Dissipative systems, 286
Distributivity, 2, 4
Dynamic reactions, 182
Dynamics of systems with variable mass, 142

E
Earnshaw theorem, 243
Eigenvalues, 161
Eigenvectors, 161
Energy

kinetic, 91, 100
potential, 100

Equilibrium, 221, 222
asymptotically stable, 286

Euler’s dynamic equations, 153, 175
Expenditure, 143

F
Faraday’s law, 208
Feynman–Kac formula, 376
First integral, 321
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Force
potential, 96
reactive, 143
rolling, 124
total, 92

Force work
total, 96

Forces
external, 92
internal, 92

Fourier transformation, 274
Fourier’s transformation

inverse, 274
Free transformations, 356
Frequency, 247
Frequency characteristic matrix, 276
Friction

coefficient, 124
dynamic, 123
force, 123
static, 123

Function
homogeneous, 101

G
Generalized coordinate system, 9
Generalized coordinates, 8, 192
Generalized forces, 193
Generalized impulses, 312
Geometric and mass symmetry, 107
Gyroscope, 179

H
Hamilton–Jacobi

theorem, 361
Hamilton–Jacobi–Bellman (HJB)

equation, 371
Hamiltonian, 312

canonical form, 317
system, 317

Hamiltonian systems
stationary, 329

Hamiltonian variables, 312
Hamilton’s

theorem, 316
Hessian, 234
Holonomic system, 192
Hurwitz

matrix, 289

polynomial, 289
Huygens formula, 202

I
Impulse, 91
Inductance, 208
Induction motor, 483
Inertial center, see Center of mass
Inertial Coriolis force, 133, 135
Inertial translation force, 133, 135
Integral Poincaré–Cartan invariant, 344
Integral universal Poincaré invariant, 344
Internal (scalar) product, 2

J
Jacobi

identity, 6
Jacobi–Poisson

theorem, 327
Jacobian matrix, 9

K
Kelly formula, 151
Kelly problem, 149
Kharitonov’s theorem, 305
Kinetic energy, 13
Kirchhoff’s laws, 208
Kronecker symbol, 3
Kronecker’s symbol, 12

L
Lagrange multipliers, 160
Lagrange multipliers vector, 227
Lagrange variables, 312
Lagrange–Dirichlet theorem, 232
Lagrange’s equation, 198
Lagrange’s error, 254
Lagrange’s function, 198
Lagrange’s lemma, 195
Lagrangian function, 227
Law of mesh, 208
Law of node, 209
Lee Hwa Chung

theorem of, 345
Lee–Poisson bracket, 322
Liénard–Chipart

criterion, 291
Linear oscillator, 230
Local bases, 10
Local equilibrium, 232



Index 491

Locally stable equilibrium, 232
Locally stable state, 229

M
Magnitude (length) of a vector, 3
Mass, 92
Matrix

positive semi-definite, 158
Mechanical constraints, 189
Meshchersky equation, 143
Mikhailov

criterion, 296
Moment of forces with respect to pole, 93
Moment of inertia, 105
Moment of the impulse, 91
Moments of inertia

principal, 155
Moments of the inertial Coriolis forces

inertial Coriolis, 135
Moments of the inertial translation forces

inertial translation, 135
Multiplicative inverse, 75

N
Newton’s laws, 91
Normal coordinates, 253
Normal form, 204
Nyquist hodograph, 278

O
ODE, 372
Ohm’s law, 208
Optimality

sufficient conditions, 371
Orthogonality criterion, 2, 4
Oscillations, 245

P
Parameters

of Rodríguez–Hamilton, 67
Partial basic solution, 248
Phase shifting, 276
Pivot, 32
Poincaré

theorem, 347
Poincaré theorem, 343
Poisson’s equation, 86
Pole, 90
Possible position, 191

Possible transfer, 193
Power, 98
Principle of mechanical energy

conservation, 100
Principle of “zero-excluding”, 305

Q
Quaternion, 71

conjugated, 73
norm, 74
normalized, 77
proper, 82

R
Regular precession, 179
Relative kinetic energy, 137
Relative momentum of the impulse, 134
Resistance, 208
Restriction

stationary, 191
Restrictions

ideal, 194
Rigid body, 32
Ring with division, 75
Rizal’s formula, 94
Robot

arm manipulator with springs, 445
articulated, 460
articulated robot manipulator, 396
Cincinnati Milacron T3 manipulator, 404
cylindrical manipulator with two

prismatic joints (PJ) and one
rotating (R), 384

cylindrical with springs, 427
double type crank swivel crane, 437
Maker 110, 465
manipulator on a horizontal platform, 468
manipulator scaffolding type, 389
manipulator Unimate 2000, 418
manipulator with swivel base, 424
manipulator with three degrees of

freedom, 476
multicylindric manipulator, 442
non-ordinary manipulator with shock

absorber, 429
rectangular (Cartesian) manipulator

robot, 387
spherical (polar) manipulator with three

rotating joints, 392
Stanford/JPL manipulator, 414
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two-arm planar manipulator, 471
two-joint planar manipulator, 434
universal programmable manipulator

(PUMA), 399
Robust stability, 304
Rotation, 59

description, 60
finite, 60
matrix, 61
plus specular reflection, 62
pure, 62

Rotation angle
nutation, 60
precision, 60
proper, 60

Rotation angles
natural, 61
of Euler, 60

Rotation matrix
proper, 70

Rotations
elementary, 60

Routh–Hurwitz
criterion, 290

S
Silvester’s lemma, 158
Simultaneous transformation of pair of

quadratic forms, 251
Slater’s condition, 227
Stationary systems, 207
Steiner theorem, 114
Stodola

necessity condition of stability, 288
System

absolute, 39
conservative, 99
inertial, 131
material points, 90
non-inertial, 131
relative, 39

System states, 229

T
Tensor

of inertia, 156
Tensor of inertia, 153
Theorem

the Chetayev theorem on instability, 237
the first Lyapunov theorem on

instability, 237
the second Lyapunov theorem on

instability, 237
Transformation

one-to-one, 9
Triple scalar product, 5, 6
Triple vector product, 5, 6
Tsiolkovsky’s rocket formula, 145

U
Unit vectors, 5
Unitary vectors, 3
Unstable equilibrium position, 230

V
Value function, 370
Vector

unitary, 10
Vector product, 4
Vectors, 2
Velocity, 11

absolute, 40
angular, 34
translation, 46

Verification rule, 371
Virial of a system, 100
Virtual displacements, 222
Virtual possible transfer, 193

W
Work

elementary, 96

Z
Zhukovski’s theorem, 180
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